Posts Tagged ‘melt’

h1

Rahmstorf: Is it OK to call him an “alarmist” now?

May 9, 2012

Some folks never give up.  In the following video Stefan Rahmstorf says…

To me a tipping point in the climate system is like a sweet spot in the climate system, where a small perturbation can have a major, even qualitative effect.  It’s like a small change in temperature moving, for example, the Greenland Ice sheet beyond the point where eventually it will melt down all together…from about 2 degrees global warming there would be a risk of the complete meltdown of the Greenland Ice sheet…I think this two degree limit agreed in Cancun by the politicians may not be enough to prevent a dangerous interference in the climate system.

Now let’s be clear about this: a “complete meltdown” of the Greenland ice sheet would raise the planet’s sea level 7 meters (7000 mm).  The sea level rise rate today is about 3 mm per year and decreasing according to satellite data.  A rational reading the tide gauge data is even less.

I guess in Greenland ice must melt at -25°C.  Here is today’s temperature outlook…

Oh, I know, the scientifically sophomoric sophisticated will tell us all about the rapidly accelerating glaciers.  Well, their favorite journal, Science, throws a little icy cold water on their dreams of catastrophic nirvana.  In 21st-Century Evolution of Greenland Outlet Glacier Velocities ( T. Moon, et. al., Science, 4 May 2012, Vol. 336, pp. 576-578)  Moon et. al. produced “a decade-long (2000 to 2010) record documenting the ongoing velocity evolution of nearly all (200+) of Greenland’s major outlet glaciers.”  They found that in some regions there was a glacier acceleration (SEE! SEE!), but not very consistently over the last 10 years.  Here is their conclusion

Our observations have implications for recent work on sea level rise. Earlier research (33) used a kinematic approach to estimate upper bounds of 0.8 to 2.0 m for 21st-century sea level rise. In Greenland, this work assumed ice-sheet–wide doubling of glacier speeds (low-end scenario) or an order of magnitude increase in speeds (high-end scenario) from 2000 to 2010. Our wide sampling of actual 2000 to 2010 changes shows that glacier acceleration across the ice sheet remains far below these estimates, suggesting that sea level rise associated with Greenland glacier dynamics remains well below the low-end scenario (9.3 cm by 2100) at present. Continued acceleration, however,may cause sea level rise to approach the low-end limit by this century’s end. Our sampling of a large population of glaciers, many of which have sustained considerable thinning and retreat, suggests little potential for the type of widespread extreme (i.e., order of magnitude) acceleration represented in the high-end scenario (46.7 cm by 2100). Our result is consistent with findings from recent numerical flow models (34).

So, Rahmstorf is worried about a “complete meltdown of the Greenland ice sheet” which would lead to 7 meters (7000 mm) of sea level rise, but the data shows “sea level rise associated with Greenland glacier dynamics remains well below the low-end scenario (9.3 cm by 2100)” (93 mm by 2100).  Does being off by a factor of 75 (7000/93) qualify as “alarmist?”

By the way, when Moon says “Earlier research (33) used a kinematic approach to estimate upper bounds of 0.8 to 2.0 m for 21st-century sea level rise” he is talking about Kinematic Constraints on Glacier Contributions to 21st Century Sea-Level Rise (Pfeffer, et. al., Science, 5 September 2008, Vol. 321. no. 5894, pp. 1340 – 1343).  I discussed this paper at length two years ago in my “Reply to John Mashey.” (Still feeling smug, John?) 

And finally,  Moon’s last sentence says “Our result is consistent with findings from recent numerical flow models (34).”  He is talking about Committed sea-level rise for the next century from Greenland ice sheet dynamics during the past decade (Price, et. al., PNAS, 31 May 2011, vol. 108 no. 22 pp. 8978-8983).    Price, et. al. say

The modeling conducted here and some reasonable assumptions can be used to make approximate upper-bound estimates for future SLR from GIS [Greenland Ice Sheet] dynamics, without accounting for future dynamical changes explicitly. As discussed above, numerous observations indicate that the trigger for the majority of dynamic thinning in Greenland during the last decade was episodic in nature, as the result of incursions of relatively warm ocean waters. By assuming that similar perturbations occur at regular intervals over the next century and that the ice sheet responds in a similar manner, we can repeatedly combine (sum) the cumulative SLR [sea level rise] curve from Fig. 4B to arrive at additional estimates for SLR by 2100. For example, if perturbations like those during the last decade recur every 50, 20, or 10 y during the next 100 y, we estimate a cumulative SLR from GIS dynamics by 2100 of approximately 10, 25, and 45 mm, respectively…Addition of the estimated 40 mm of SLR from changes in SMB [surface mass balance] by 2100 would result in a total SLR from Greenland of 85 mm by 2100.

Holy cow! Rahmstorf is telling us to be worried about 7000 mm of sea level rise due to the “complete meltdown of the Greenland ice sheet,” but Price et. al. say maybe 85 mm due to Greenland by 2100.

h1

Climate change doom data from the Southern Hemisphere

October 2, 2009

News Flash!!

Clear signs of climate doom in the Southern Hemisphere!!

Satellite data used to measure the seasonal growing and shrinking of sea ice area in the Southern Hemisphere make a stark realization clear: Five of the six most extreme yearly sea ice extents ever measured in the Southern Hemisphere have occurred in just the last 10 years.   As a planet and global community, we need to prepare for the worst.  The time to dither and argue is over – the time to act is now.

I call on the leading governments of the world, the United Nations, NGOs, environmental activists, and uber-informed stars of popular culture to meet in a central location (I suggest Emirates Palace in Abu Dhabi) to deal with this crisis.  They must develop an innovative plan to shepherd the other 6 billion people of the Earth to more environmentally sensitive life styles – before it’s too late. 

People must be taught to temper their greedy desire for luxuries such as electricity, safe shelter, food and clean water, and long life expectancies.  People need to learn how to overcome the archaic ambition of working to make a better life for their children.  Better yet, they should just stop having children.

If you do not understand the treacherous environmental precipice upon which we are poised, let the unalloyed data speak for itself.  Brace yourself – five of the six years with the greatest Southern Hemisphere sea ice extent have occurred in just the last decade!  If this historically unprecedented* trend continues, we are doomed.  See the graph below.

Southern hemisphere maximum sea ice area

Southern hemisphere maximum sea ice area. The data is real, but Tom Moriarty takes complete blame for all satirical content.

As you can see, the yearly maximum sea ice area in the Southern Hemisphere has been significantly larger in the last decade.   If we don’t act soon, the planet will become a barren ball of ice and snow.
 
 
*Since satellite data started being collected in 1979
 
h1

The Thermohaline Circulation Only Stops for Extreme, Unrealistic Models

June 4, 2009

Return to Criticisms of Al Gore’s “An Inconvenient Truth”

Gore gives a cartoon description of the ocean circulation system when he explains what has become known as the thermohaline circulation, or the meridional overturning circulation.  In his simplistic scenario the surface ocean current that flows north in the Atlantic, bringing warmth to northern Europe will be halted by melting ice from Greenland, subsequently throwing Europe into an ice age. 

Here is Gore’s explanation in his own words from the Inconvenient Truth movie:

The Earth’s climate is like a big engine for redistributing heat from the equator to the poles.  And it does that by means of ocean currents and wind currents.  They tell us, the scientists do, that the Earth’s climate is an non-linear system – just a fancy way they have of saying that the changes are not all just gradual, some of them come suddenly, in big jumps… And so, all those wind and ocean currents that have formed since the last ice age and have been relatively stable – they’re all up in the air – they change. 

And one of the ones they’re most worried about, where they’ve spent a lot of time studying the problem is in the the North Atlantic where the gulf stream comes up and meets the cold winds coming off the Arctic over Greenland and that evaporates the heat out of the gulf stream and the steam is carried over to western Europe by the prevailing winds and the Earth’s rotation.  But isn’t it interesting that the whole ocean current system is all linked together in this loop, they call it the ocean conveyor.

vlcsnap-324533And the red are the warm surface currents, the Gulf Stream is the best known of them.  But the blue represent the cold currents running in the opposite direction…

vlcsnap-32114Up in the North Atlantic, after that heat is pulled out, what’s left behind is colder water, and saltier water, because the salt doesn’t go anywhere. And so, that makes it denser and heavier.  And so that cold heavy dense water sinks at the rate of 5 billion gallons per second.  And then that pulls that current back south.ani-21

At the end of the last ice age as the last glacier was receding from North America the ice melted and a giant pool of fresh water formed in North America, and the Great Lakes are the remnants of that huge lake.  An ice dam on the eastern border formed, and one day it broke, and all that fresh water came rushing out, ripping open the St. Lawrence there, and it diluted the salty dense cold water, made it fresher and lighter so it stopped sinking, and that pump shut off.

 vlcsnap-549956-smallAnd the heat transfer stopped.  And Europe went back into an ice age for another 900 to 1000 years.  And the change from conditions like we have here today to an ice age took place in perhaps as little as ten years time.  So that’s a sudden jump.  Now, of course, that’s not going to happen again because the glaciers of North America are not there… Is there any other big chunk of ice anywhere near there…?  Oh, yeah [Gore says ominously, as the image pans to ice covered Greenland] we’ll come back to that one…

Later in the movie Gore tells us that Greenland is rapidly melting.  The point being that it will provide a massive amount of fresh water that will stop the the thermohaline conveyor and  “would raise sea level almost 20 feet if it ‘went,'” Gore tells us.  He tells us about water seeping to the bottom of the ice sheets where it “lubricates where the ice meets the bedrock” causing the ice to slide toward the ocean.

Then he shows a series of pictures purporting to show the amount of melting in Greenland.  Gore says…

ani-31

“In 1992 they measured this amount of melting in Greenland … Ten years later this is what happened…And here’s the melting from 2005″

 

Hosing Experiments

But what if…?  What if there were a huge amount of low density fresh water dumped into the North Atlantic where the high density water is supposed to be sinking, just like the giant Canadian lake crashing through the barrier of ice the Gore told us about?  This possibility is explored with computer models known as  “hosing experiments.”  In a hosing experiment a model that simulates the ocean and atmosphere circulation patterns is modified to artificially dump huge amounts of extra fresh water, as if from a giant hose, into some location in the ocean.   It has been found that when enough fresh water is forced in, the circulation can be slowed, but rarely stopped

How much fresh water do the hosing experiments use to nearly stop the thermohaline circulation?  Typically (or here), they use one million cubic meters of fresh water per second, for 100 years!!!  (One million cubic meters per second has its own unit name: One Sverdrup or 1 Sv).  How does 1 Sv compare to, say, the rate of water flowing over Niagara Falls?

Niagara falls168,000 cubic  meters of water fall over Niagara Falls every minute.  That is about 2,800 cubic meters of water per second.  So one Sverdrup of water is the same as about 350 Niagara Falls!  (1,000,000 / 2,800  = 357).  So, roughly speaking, if 350 Niagara Falls were dumped into the oceans around Greenland continuously for 100 years, then we could expect to see a significant slow down of the thermohaline circulation.

River systems discharging into the Arctic Ocean.

River systems discharging into the Arctic Ocean.

How does one Sverdrup compare to the freshwater discharge of ALL the rivers emptying into the arctic ocean?  One Sverdrup of fresh water amounts to nearly 32,000 km3 of water per year  (1 Sv  x 106 m3 s-1/sv x (86,400 s/day) x (365 day/year) = 31,536 km3/year).  The total fresh water discharge from all rivers into the arctic is only about 4,300 km3 per year.  So, typical hosing experiments that nearly stop the overturning circulation add a water volume about 7 times the amount of water from all rivers discharing into the Arctic Ocean combined.

What about Greenland?

Hosing copyGore ominously implies that the amount of fresh water needed to turn off the overturning circulation is just waiting to pour off of  Greenland, due of course (drum roll), to CO2 induced anthropogenic global warming.   His pictures of Greenland, shown above, imply that about half of Greenland’s 2.8 million cubic kilometers of ice have melted in the 13 years between 1992 and 2005.  This is wildly misleading.  Only a miniscule fraction of the area shown in Gore’s Greenland images actually melts every year.   This is evidenced by mass balance studies, which show Greenland loses on the order of hundred cubic kilometers of ice every year,  which translates into a measly 0.003 Sverdrups.

100 km3 /year= 1011 m3/year

(1011 m3/year) / (365 days/year) / (86,400 seconds/day)
             = 3 x 103 m3/second
             = 0.003 Sv

Put another way, one Sverdrup of fresh water is 86.4 km3/day.  So the hosing experiments pouring in one Sverdrup put about as much fresh water into the ocean each day (86.4 km3) as Greenland provides in a year (100 km3).

But if Greenland actually started melting, by some extraordinary circumstance,  300 times faster, then it would yield 1 Sverdrup, or 1,000,000 cubic meters, of fresh water every second.  What would happen after 100 years of melting at that rate?  Well, that’s a trick question, because at a melting rate that gives 1 Sverdrup of freshwater Greenland would run out of ice in about 90 years.  This is because Greenland has only 2.85 million cubic kilometers of ice, and one Sverdrup of water is the same as about 31,500 cubic kilometers of water per year.  Ignoring the difference in density between ice and water, then 2.85 million cubic kilometers divided by 31,500 cubic kilometers per year gives 90 years.

Conclusion

You don’t hear as much about the threat of the collapse to the thermohaline circulation today as you did a few years ago.  This is because it has become recognized as being a very far fetched possibility, even by most alarmists who want to maintain a shred of dignity.  But I have a feeling we will not see this wildly exaggerated threat removed from new editions of Gore’s “An Inconvenient Truth” anytime soon.

Return to Criticisms of Al Gore’s “An Inconvenient Truth”

h1

Reply to John Mashey

May 27, 2009

I recently had an exchange of comments with some folks at Millard Filmore’s Bathtub concerning one of my previous posts about sea level rise near Boston.  The discussion seemed to really strike a nerve with alarmist nag John Mashey.  He scolded me with the following comment- you can almost see him wagging his finger:

Mashey’s comment

Mr Moriarity’s views on SLR at this time are simply not worth reading, for reasons I will explain.

NOAA collects the data, but the past is not the future. For very good scientific reasons, NOBODY serious about climate science does a simple linear projection of last century’s trendline into the next one, unlike Mr. Moriarty’s suggestion.

That would be about as silly as claiming solar PV [invented where I used to work] scientists should already be getting 100% efficiency.

Within ~30 minutes’ of Tom’s NRELare places thick with expert climate scientists, which makes him one of the lucky people who can easily go talk to experts:

NCAR
UC Boulder
USGS-Denver

I’m a AAASmember: I did a quick search of Science (An adequately prestigious journal) for “sea level rise”, and from the first hit page picked out a few recent SLR articles by Colorado authors, all of which I’d already read, along with the relevant IPCC TAR and AR4 chapters, etc, etc. (*I’m* no SLR expert, but I often talk to people who are. )

Mr. Moriarty has strong views on SLR, and surely is a AAAS member and has read these papers, all of whom think SLR will be a serious (acclerating) problem. He *could* write an article for Science showing them wrong, which would make him (properly) famous, given the mass of physics that would haveto be overturned to preserve a simple linear trend.

See How Much More Global Warming and Sea Level Rise?, 2005, 8 authors from NCAR.

See Paleoclimatic Evidence for Future Ice-Sheet Instability and Rapid Sea-Level Rise”, 2006, of whose 6 authors, 2 are at NCAR,1 at UC-Boulder, and 1 at USGS-Denver.

See Glaciers Dominate Eustatic Sea-Level Rise in the 21st Century”>,2007, of whose 8 authors, 5 are at UC Boulder.Kinematic Constraints on Glacier Contributions to 21st-Century Sea-Level Rise, 2008, of whose 3 authors one is at UC-Boulder.

See “On the basis of calculations presented here, we suggest that an improved estimate of the range of SLR to 2100 including increased ice dynamics lies between 0.8 and 2.0 m.”

(That’s probably as good a single estimate as you get right now. People are trying to model melt dynamics for places that have been frozen through recorded human history, complexified by various nonlinear effects, tipping points, etc. Ice-sheet issues are *hard*.)

NCAR says Community Ice Sheet Model Will Aid Understanding of Sea Level Rise.

“Scientists think that this mechanism might trigger the rapid retreat of the West Antarctic Ice Sheet – which could raise sea level by a meter or more within a century or less.”

See Dan Cayan (SCRIPPS)talk @ SFBCDCconference a year ago. This was not news,but right in line with mainstream science.

Specifically, see p 18-19, noting that some of the models are from NCAR. I used to sell supercomputers to NCAR and talk to their scientists. They are quite competent.

NCAR and USGS (and some of UCBoulder) are Federally-funded to do good science for us all. If Mr. Moriarty denigrates *their* work, he might want to think about the fact that most of *his* career has been supported by *Federal* tax money.

That’s money from me and the companies I’ve worked for. My home state (CA) since 1983 is far and away the biggest *net* contributor to the Federal budget, and none of NCAR, NREL, Fermilab, or Argonne are here, but we helped pay for them. [And this is OK with me, since I like to think America is a *country*, not just a collection of independent states; all those labs have made good contributions.]

LOOKING AHEAD
NCAR has regular lectures. So does UC-BOulder’s NSIDC.

If Mr. Moriarty actually wants to learn about the science, he has *real* experts nearby to visit, often.

I’m done.

My reply

John thanks for the thoughtful comment.  I hope you have had a chance to wind down get off your high horse during the holiday weekend.

Congratulations on being a AAAS member.  So am I.  And so are 120,000 other people.  For those of you who are impressed by John’s membership in the AAAS, let me fill you in on the strict requirements for membership.  Send a check – then you are a member. 

Oh, by the way, thanks for inventing solar PV, I guess without you I wouldn’t have a job.

Let’s talk about the papers you cited: 

#1  How Much More Global Warming and Sea Level Rise?  Science 18 March 2005: Vol. 307. no. 5716, pp. 1769 – 1772. 

John, did you actually read this paper?  Meehl, et. al., consider three possible scenarios from the Special Report for Emissions Scenarios (SRES).  Specifically, scenarios B1, A1B, and A2.  They ran two models on each of these scenarios. Here is what they found for 21st century steric sea level rise:

Low range scenario B1, model PCM: 13 cm

Low range scenario B1, model CCSM3: 18 cm

Low range scenario A1B, model PCM: 18 cm

Low range scenario A1B, model CCSM3: 25 cm

Low range scenario A2, model PCM: 19 cm

Low range scenario A2, model CCSM3: 30 cm

Let me translate that:  Under their worst case scenario and their most sensitive model you get 30 cm (12 inches) by 2100  Wow – pretty scary.  Note that the map at  “Impacts of Sea Level Rise on the California Coast,” which I mentioned in my earlier comment to alleviate your fear of the west coast going under water, and in which you need to zoom way, way in to even find the affected areas, were based on a much greater 140 cm (56 inch) sea level rise by 2100.

So John, why did you cite this paper.  Let me guess: You read the abstract and saw the words “additional 320% sea level rise.”  But you didn’t actually read the article, did you? These numbers don’t exactly fit the alarmists’ (Gore and Hansen for example) picture of cities under water by the end of the century.

#2  Paleoclimatic Evidence for Future Ice-Sheet Instability and Rapid Sea-Level Rise , 24 March 2006: Vol. 311. no. 5768, pp. 1747 – 1750

This paper has a preposterous flaw.  It assumes a 1% yearly increase in atmospheric CO2 levels for the 21st century.  That sounds pretty innocuous – “What’s the problem with the assumption of a 1% increase?”, you might ask.  The problem is that the actual increase is about 0.5% per year.  Check this yourself here.  (By the way, John, that’s a NOAA website.  NOAAis one of those entities with labs in Boulder that you imply I have never heard of.)  This 0.5% trend has been fairly consistent for decades.  You can get the raw data from Mauna Loa, take the derivative, even take the second derivative, and see that 1% is preposterous. 

You might say “Big deal, 0.5% or 1%, what’s the difference.”  This is like a compound interest problem.  Take 1.005 to the 100th power (0.5% increase for 100 years) on one of your super computers, then take 1.01 to the 100th power (1% increase for 100 years).  The rest of you readers can simply try this on your desktop scientific calculator.  See the difference?  Pretty big, isn’t it?

Here is a paper that you seem to have overlooked in your comprehensive literature search: An overview of results from the Coupled Model Intercomparison Project, Covey, et. al., Global and Planetary Change, Vol 37, 2003. 

Covey et. al. write about the same 1% per year CO2 increase, but warned “The rate of radiative forcing increase implied by 1% per year increasing CO2 is nearly a factor of two greater than the actual anthropogenic forcing in recent decades, even if non-CO2 greenhouse gases are added in as part of an “equivalent CO2 forcing” and anthropogenic aerosols are ignored.”  They conclude that this 1% “ increasing-CO2 scenario cannot be considered as realistic for purposes of comparing predicted and observed climate changes during the past century.”

#3  Glaciers Dominate Eustatic Sea-Level Rise in the 21st Century, Meier, et. al., Science, 24 August, 2007, Vol 317, 1064-1067

Meier, et. al, calculated a 560 mm rise in sea level due to melting ice by 2100 based on an accelerating rate of global ice melting.   They managed to concluded that the amount of ice melting each year had been, on the average, 32 Gigatonnes (Gt) greater than the previous year from 1995 to 2005.  They simply extrapolated this yearly 32 Gt increase out to 2100.   A 32 Gt yearly increase in the amount of global ice that melts each year, over the 10 year period from 1995 to 2005, would mean 320 Gt more ice was melting in 2005 that in 1995.  That translates into a sea level rise rate in 2005 that must have been 0.9 mm greater than the sea level rise rate in 1995 (320 Gt/year x  2.7 microns/Gt  = 0.9 mm/year).

But we have very good sea level rise data that covers the period from 1995 to 2005.  And John, you will be delighted to know that this data is maintained by the University of Colorado, in Boulder.

sea level rise

Take a good look.  Note that the sea level rises a rate of 3.2 mm per year from 1995 to 2005 as indicated by the line fit and the notation in the bottom right corner.  It does not start out at 3.2 mm per year in 1995 and go to 4.1 mm per year (3.2 mm/year + 0.9 mm/year) by 2005.  The rise rate clearly does not increase by 0.9 mm per year over that period of time. 

What should have happened by 2009?  Well, according to Meier the global rate at which water was added to the oceans should have continued increasing by an additional 32 Gt/year and therefore there should be 448 Gt { (2009 – 1995) x 32 Gt/year = 448 Gt/year) } more water added to the oceans per year in 2009 than in 1995.  That translates into a rise rate that is 1.2 mm/year greater in 2005 than in 1995.  If the slope of the line fit in the above graph were actually 3.2 mm/year in 1995, then by Meier’s logic it should have been 4.4 mm/year by 2009.  However, the graph clearly shows that, if anything, the rise rate is less in 2009 than in 1995.

Please feel free to actually read the paper by Meier, et. al.  Please examine their source of data and their data reduction.  Here is a nice sample of how they determined that the amount of ice melting from glaciers and ice caps (as opposed to ice melting form the Greenland or Antarctic ice sheets) is increasing:

 Figure 1 from Meier

They took a scattered set of Meier’s own data, showing the melting rate of glaciers and ice caps, and fit it to a line.  It is traditional to give some numerical indication of the quality of a line fit.  In this case Meier chose not to provide such an indication.  So I digitized his data and did it for him: the r-squared value of this data is less than a dismal 0.1.  They found the slope of the line to be 11.9 Gt/year/year and thus concluded that for each year between 1995 and 2005 the glaciers and ice caps were losing 11.9 Gt more ice than the previous year.  Then they extrapolated that rate out another 95 years.  To extrapolate a function out 10 times the actual data’s domain is risky under any circumstances.  When the data is this scattered as this, it is just plain silly. 

They then undertook equally rigorous analysis of ice changes from the Greenland ice sheet, the West Antarctic ice sheet and the East Antarctic ice sheet, added the results together and came up with their 32 Gt/year/year acceleration rate.

#4.  Kinematic Constraints on Glacier Contributions to 21st-Century Sea-Level Rise, Pfeffer, et. al., Science, 5 September 2008, Vol. 321. no. 5894, pp. 1340 – 1343

To their credit, Pfeffer et. al., work in this paper to put an upper limit on the sea level rise by 2100.  This immediately separates them from the wildest alarmists like Al Gore and James Hansen.  Their conclusion is the maximum sea level rise by 2100 is 2 meters.  But they say in the abstract “More plausible but still accelerated conditions lead to total sea-level rise by 2100 of about 0.8 meter.”  This is still quite high and apparently caught your eye, right John?

But what must happen for this 0.8 meter sea level rise?  Pfeffer et. al., use the following logic:

“Rapid, dynamically unstable discharge of ice through calving is restricted to glaciers with beds based below sea level. We identified and calculated the aggregate cross-sectionalarea of Greenland’s marine- terminating outletglaciers by using surface and bed topography (16) and measured ice velocities (5) to identify all potential pathways for rapid discharge, including channels presently flowing rapidly as well as potentially unstable channels (Fig. 1 and table S1). Cross-sectionalareas (gates) for each outlet were calculated at the point of greatest lateral constriction by bedrock in the glacier’s marine-based reach. Ice stream widths in Antarctica can vary in time, but for Greenland outlet glaciers cross-sectional areas are constrained almost entirely by bedrock topography. Of the 290 km2 total aggregate gate cross-sectional area, we identified 170 km2 as the aggregate marine based gate area where drainage to the ocean is not blocked by near coastalsills standing above present day sea level. All dynamic discharge (Table 2) must pass through these gates by 2100 to meet2- to 5-m SLR targets. We considered four scenarios: velocities were calculated for both the “marine based” gate (170 km2) and the “total aggregate” gate (290 km2) given both projected SMB and 10× inflated SMB losses. We then considered whether those velocities are realistic.”

They note that “The present-day average velocity of all Greenland outlet glaciers is 0.56 km/year when weighted by drainage basin area or 1.23 km/year when weighted by gate cross-sectional area.”  For the large sea level rises that they consider, these velocities must increase.  If we just look at the case that requires the smallest velocity increase to reach 2 meters of sea level rise by 2100 (i.e. the case that most favors your argument), then Pfeffer reports that the velocity for the discharge gates must go up to at least 26.8 km/year.

And they don’t say that this velocity must be achieved after 100 years of a slow acceleration.  Rather, they say “These velocities must be achieved immediately on all outlets considered and held at that level until 2100. Delays in the onset of rapid motion increase the required velocity further”

As you can see, the 2 meter rise requires the glacier velocity at the discharge gates to increase by at least a factor of 22. Right Now. Today. And then remain at that extraordinary velocity until 2100, winter, spring, summer and fall.

Here are some statements from the paper concerning their own velocity calculations: “The scenario velocities far exceed the fastest motion exhibited by any Greenland outlet glacier.”  “A comparison of calculated (Table 2) and observed (1.23 km/year) average velocities shows that calculated values for a 2-m SLR [sea level rise] exceed observations by a factor of 22 when considering all gates and inflated SMB and by a factor of 40 for the marine gates without inflated SMB [surface mass balance], which we consider to be the more likely scenario.”  “Although no physicalproof is offered that the velocities given in Table 2 cannot be reached or maintained over century time scales, such behavior lies far beyond the range of observations and at the least should not be adopted as a central working hypothesis.”

By extension, the glaciers would have to increase velocity by a factor of 9, today, right now,  and continue at that rate until 2100 to achieve the 0.8 meters. 

What would cause the glaciers to increase their velocity to such an extent?  The going theory at the time the Pfeffer paper was written was that melting water would make its way to the bottom of the glaciers and lubricate their motion to the sea.  Even Al Gore talks about this in his famous “An Inconvenient Truth.”  But data subsequent to the Pfeffer paper have shown that not to be the case. “Large and Rapid Melt-Induced Velocity Changes in the Ablation Zone of the Greenland Ice Sheet,”  R. S. W. van de Wal, et al., Science 321, 111 (2008).

Van de Wal, et. al., note:

Here, we present ice velocity measurements from the major ablation area along the western of the ice sheet. The data set contains simultaneous measurements of ice velocity and ablation rates, which makes it possible to study the relation between ice velocity and meltwater input on longer (>5 years) and shorter (~1 day) time scales…

Annually averaged velocities are completely decorrelated to the annual mass balance, whereas a correlation might be expected if there is a strong feedback between velocities and melt rate, leading to enhanced flow, surface lowering, and increased melt rates…

In earlier work (4, 7), it has been suggested that the interaction between meltwater production and ice velocity provides a positive feedback, leading to a more rapid and stronger response of the ice sheet to climate warming than hitherto assumed. Our results are not quite in line with this view. We did not observe a correlation between annual ablation rate and annual ice velocities. Ice velocities respond fast to changes in ablation rate on a weekly time scale. However, on a longer time scale, the internal drainage system seems to adjust to the increased meltwater input in such a way that annual velocities remain fairly constant. In our view, the annual velocities in this part of the ice sheet respond slowly to changes in ice thickness and surface slope.

So, it looks like you will have to live with the disappointing news that the planet is not doomed by rapid sea level rise after all.  And your approval for grand plans to save places like Boston and San Francisco may not be needed.  Don’t lose hope though, with any luck the planet will be threatened by a giant meteor and the services of your brilliant mind will be needed after all.

h1

Arctic sea ice gone by 2015? A challenge to David Barber.

December 10, 2008
Here we go again. Last March I wrote about the media predictions that the Arctic sea ice would be gone by the summer of 2012. As I showed back then, those wild predictions were based on a simple extrapolation of the minimum summer sea ice extents of 2006 and 2007.

 

I’ll repeat the basic facts:

The sea ice area in the Arctic has been monitored by satellite for almost 30 years, since 1979. The area of the ice rises and falls, as you would expect, as the year cycles through its seasons. It reaches its yearly minimum by late September or early October. On the average, this minimum has been declining for the last 30 years. After October the northern sea ice area increases until it reaches a maximum in late March or early April each year. The yearly cycle is huge. Typically, about 60% of the total sea ice area melts away as is goes from yearly maximum to the yearly minimum.

The 2007 melt season was very severe and the Arctic sea ice area anomaly reached its lowest level since satellite tracking began.  But that low level was immediately followed by an unprecedented rise in sea ice area in the Arctic in the months following the 2007 summer melt season. The 2008 melt season was quite severe, but not as severe as the 2007 melt season. In order to go from the minimum ice extent of 2007 to zero ice in 2012, the Arctic sea ice extent minimum needs to drop an average of about 600,000 square kilometers per year. But the Arctic ended up with slightly more ice area (about 100,000 square kilometers more) after the 2008 melt season than after the 2007 melt season.  Figure 1, below sums it up.

Figure 1

Figure 1

New predictions of meltdown

Now along comes David Barber  from the University of Manitoba, who estimates that the Arctic Basin will be ice free by the summer of 2015. The Star Phoenix reports:

The ice that has covered the Arctic basin for a million years will be gone in little more than six years because of global warming, a University of Manitoba geoscientist said. And David Barber said that once the sea ice is gone, more humans will be attracted to the Arctic, bringing with them even more ill effects…He said he estimates the Arctic sea should see its first ice-free summer around 2015…Barber has said before the Arctic basin would be free of summer sea ice some time between 2013 and 2030. But their research about recent changes in the Arctic has allowed them to pinpoint the date even closer.

Barber sounds like a smart guy, and was the scientist in charge of a $40-million Arctic research project, the Circumpolar Flaw Lead System Study. He will present his preliminary findings at the International Arctic Change 2008 conference  in Quebec. However, his track record for predictions is rather spotty. Earlier this year National Geographic reported:

“We’re actually projecting this year that the North Pole may be free of ice for the first time [in history],” David Barber, of the University of Manitoba, told National Geographic News aboard the C.C.G.S. Amundsen, a Canadian research icebreaker.”

Prediction for summer of 2008 didn’t work out

The Arctic sea ice concentration reached its minimum around September 15th this year. Figure 2, below, from the Polar Research Group at the University of Illinois, shows the distribution of ice in the Arctic on that day. As you can see, the North Pole was not even close to being ice free. Figure 3 shows the Arctic Basin sea ice area for the last 365 days. Note that in mid-September the the sea ice area anomaly for the Arctic Basin was about negative 0.75 million square kilometers, but there were still 2.5 million square kilometers of ice yet to melt. Again, not even close to zero.

Figure 2

 Figure 2. Arctic Sea Ice Concentration on September 15th, 2008, when the Arctic sea ice reached its minimum for the year. Image from the University of Illinois Polar Research Group.

Figure 3. Figure 3. Arctic Basin sea ice area for the last 365 days.  In mid-September the sea ice anomaly was negative 0.75 million square kilometers, but there were 2.5 million square kilometers more than zero.  Image from the University of Illinois Polar Research Group.  Click on image to see clearer version. 

 
Those who like to parse words will note that National Geographic piece did not quote Barber as saying the “Arctic Basin” or the “Arctic Ocean” would be ice free during the summer of 2008.  They will correctly point out that he said “the North Pole.”  My answer to that is “So what.”  The North Pole has certainly seen open water in modern times, as attested to by the following images:
Figure 4.

 Figure 4. Skate (SSN-578), surfaced at the North Pole, 17 March 1959. US Navy photo courtesy of tripod.com. This image is from NavSource Online: Submarine Photo Archive

Figure 5.

 Figure 5. Seadragon (SSN-584), foreground, and her sister Skate (SSN-578) during a rendezvous at the North Pole in August 1962. Note the men on the ice beyond the submarines. USN photo from The American Submarine, by Norman Polmar. This image is from NavSource Online: Submarine Photo Archive

 

What about Barber’s prediction for 2015?

The December 5th StarPhoenix article mentioned above says that according to Barber, “The ice that has covered the Arctic basin for a million years will be gone in little more than six years because of global warming.”  I wonder if Barber can seriously believe that the Arctic Basin has been continuously ice covered for “a million years.”  There is considerable evidence  that the entire Arctic region was warmer just several thousand years ago than it is now. 

Open water from the northern coast of Greenland to the North Pole likely occurred in the not too distant past.  According to Science Daily, Astrid Lysa and colleagues have studied shore features, driftwood samples, microfossils and shore sediments from Northern Greenland. Science Daily reports:

 “The architecture of a sandy shore depends partly on whether wave activity or pack ice has influenced its formation. Beach ridges, which are generally distinct, very long, broad features running parallel to the shoreline, form when there is wave activity and occasional storms. This requires periodically open water,” Astrid Lyså explains.

Pack-ice ridges which form when drift ice is pressed onto the seashore piling up shore sediments that lie in its path, have a completely different character. They are generally shorter, narrower and more irregular in shape.

“The beach ridges which we have had dated to about 6000-7000 years ago were shaped by wave activity,” says Astrid Lyså. They are located at the mouth of Independence Fjord in North Greenland, on an open, flat plain facing directly onto the Arctic Ocean. Today, drift ice forms a continuous cover from the land here.

Astrid Lyså says that such old beach formations require that the sea all the way to the North Pole was periodically ice free for a long time.

“This stands in sharp contrast to the present-day situation where only ridges piled up by pack ice are being formed,” she says.

Funder and Kjaer reported similar results at the 2007 fall meeting of the American Geophysical Union. They point out that “Presently the North Greenland coastline is permanently beleaguered by pack ice…” but “that for a period in the Early Holocene, probably for a millennium or more, the Arctic Ocean was free of sea ice at least for short periods in the summer.” They date this time period to sometime between 8500 and 6000 years ago.  (Update 7/8/10 – Funder now believes “that multiyear sea ice was reduced to between half and a third of the present during the Holocene Thermal Optimum.”  Thanks to Kevin O’Neill and his persistence  in making this correction.)

An Open Challenge to David Barber

I am concerned about climate exaggerations and the effect  they have on public policy makers.  It seems quite clear that David Barber was off the mark when he predicted that “this year that the North Pole may be free of ice for the first time,” because neither the Arctic Ocean, the Arctic Basin nor the North Pole were ice free this past summer.  The North Pole being ice free is not that unusual, and the entire Arctic was probably ice free a relatively short 7,000 years ago.

Now Barber has made the slightly longer term prediction that “The ice that has covered the Arctic basin for a million years will be gone in little more than six years.”  I propose a friendly wager based on this prediction.  I will bet David Barber $1000(US) that the ice covering the Arctic Basin will not be gone anytime before December 31st, 2015.  The bet would involve no transfer of  cash between myself or Barber, but rather, the loser will pay the sum to a charitable organization designated by the winner.

 Definition of terms.  The Arctic Basin is defined by the regional map at Cryosphere Today.  “Gone” means the Arctic Basin sea ice area is less that 100,000 square kilometers, according to National Center for Environmental Prediction/NOAA as presented at Cryosphere Today .  Charitable organizations will be agreed upon at the time the bet is initiated. 

David Barber is a smart guy and evidently an expert in his field.  Taking on a wager with an amateur like me should be like shooting fish in a barrel.  I look forward to reaching an agreement soon.

h1

Volcanos in Gakkel Ridge NOT responsible melting the Arctic ice

July 10, 2008

I am not only a global warming skeptic, but a skeptic in general.  I call ‘em as I see ‘em.

There have been some attempts to link the arctic sea ice loss of the last several years to reports of volcanoes under thousands of feet of water in the Gakkel Ridge,

The truth is that all the energy from a volcano the size of Mount St. Helens could only melt 100 square kilometers of three meter thick ice.  This is a trivial amount of ice for the arctic region, which typically oscillates between about 4 million and 14 million square kilometers every year.  100 square kilometers is only one hundred thousandth of the yearly change in Arctic sea ice extent

.

Arctic region showing the location of the Gekkal ridge.  This Google Earthimage, with annotation by Moriarty, obviously does not show the arctic sea ice.

Let’s do some simple math to work this out:

First, how much energy is released by a volcano?  Of course, if varies greatly, but we just need an order of magnitude approximation for now.  A common estimate  for the energy released by the Mount St. Helens explosion is 24 megatons, where a megaton is supposed to be equivalent to the energy released by a million tons of TNT.  A joule is the basic SI unit for energy, and one megaton is equal to 4.2 million billion joules (4.2e+15 joules).  Therefore the 24 megatons released by Mount St. Helens translates into about 100 million billion joules (1.0E+17 joules).  That is:

(4.2E+15 joules/megaton  X  24 megatons  = 1.0E+17 joules).

So now the question is: how much ice could be melted by 100 million billion joules of energy?  It takes about 4 joules to heat one gram of water by 1 degree C.  But it takes many more joules to melt a gram of ice.  The amount of energy needed to melt a gram of a solid to a liquid is called the “heat of fusion.”  The heat of fusion for water is 334 joules per gram.   If we divide the total energy of the volcano by the heat off fusion of water, we will get the number of grams of ice that could be melted.  Doing the math:

1.0E+17 joules   /   334 joules per gram   =   3.0E+14 grams

OK, the energy released by Mount St. Helens would melt about 3.0E+14 (three hundred million million) grams of ice.  A gram of ice is about 1.1 cubic centimeters (1.1 cc), so we can round it to 1 cc just to make things simple.  That means that Mount St Helens released enough energy to melt 3.0E+14 cubic centimeters of ice. 

Let’s get a handle on what “3.0E+14 cubic centimeters of ice” means.  A cubic meter of ice is the same as 1,000,000 cubic centimeters of ice.   So, 3.0E+14 cubic centimeters of ice are the same as 3.0E+8 cubic meters of ice.  Still a pretty big number to grasp.  A sheet of ice that is one meter thick and one square kilometer would have a volume of 1 million cubic meters (1.0E+6 m3).  In this case, 3.0E+8 cubic meters of ice would be the same as 300 square kilometers of ice that is 1 meter thick.

Now we have a number that is easier to deal with.  That is, the energy of Mount St. Helens would be enough to melt 300 square kilometers or ice that is 1 meter thick.  Finally, we’ll make the estimate that the ice is about 3 meters thick in the arctic.  (Of course, it is much thicker some places and much thinner in others.)  Then the energy of Mount St. Helens would melt about 100 square kilometers of ice in the Arctic.

The bottom line

The Arctic goes through some serious changes in sea ice extent every year as the season change.  The sea ice extent changes by about 10 million square kilometers every year.  100 square kilometers is about one hundred thousandth of that.  It would take a thousand volcanos the size of Mount St. Helens every year to account for just 1% of the yearly Arctic ice loss.

I am not only a global warming sceptic, but a skeptic in general.  I call ‘em as I see ‘em.

Mount St Helens explosion, May 18th, 1980.

Follow

Get every new post delivered to your Inbox.

Join 52 other followers