Posts Tagged ‘temperature’

h1

The Search for Acceleration, part 10, US Gulf Coast

February 17, 2014

magnifying glass 145This is part 9 of a series of posts in which I am searching for a large acceleration in sea level rise rate in the latter part of the 20th century.  Such a rise rate is needed  to reconcile the 1.8 mm per year average rise rate for the century attributed to tide gauge data and the approximately 3 mm per year rise rate for the tail end of the century attributed to the satellite data.

U.S. Gulf Coast

This region  has 4 tide gauge sites with at least 90% data completion between 1950 and 2008.  Three of the sites have data back to 1930 or earlier .  I will analyse this data in my usual manner: detrending, weighting, averaging and derivatives.

This slideshow shows my standard analysis.

This slideshow requires JavaScript.

Conclusion

One thing is certain from the above graphs: the sea level rise rate in the US Gulf Coast region has not shown an acceleration in the last part of the 20th century or the 21st century. The rise rate reached a peak in the 1940s and has been dropping since around 1970.

Keep in mind that there are many factors that contribute to the rise rate in this region.  Subsidence is the primary cause, and subsidence itself has multiple components.

h1

The Search for Acceleration, part 7, Western North America

July 30, 2013

magnifying glass 145This is part 7 of a series of posts in which I am searching for a large acceleration in sea level rise rate in the latter part of the 20th century.  Such a rise rate is needed  to reconcile the 1.8 mm per year average rise rate for the century attributed to tide gauge data and the approximately 3 mm per year rise rate for the tail end of the century attributed to the satellite data.

Western North America

This region  has 13 tide gauge sites with at least 90% data completion between 1950 and 2008.  Seven of the sites have data back to 1920 or earlier (but with some gaps).  I will analyse this data in the same manner as the Australian data.  I will start with the usual detrending, weighting, averaging and derivatives.  Then, I will find the portion of the sea level that is orthogonal to the ENSO3.4 sea surface temperature.

This slideshow shows my standard analysis.

This slideshow requires JavaScript.

 

ENSO

Like Australia, the sea level around the Western coast of North America seems to be related to the El Nino Southern Oscillation.  The following plot shows an overlay of the detrended weighted average of the 13 Western North American tide gauge sites and the NINO3.4 index from the Hadley Centre.  Both are detrended from 1920 to 2008.  Note that the ENSO data scale is inverted.

Enso and Western North America

Now I will  remove the part of the sea level data that correlates to ENSO  by breaking the sea level data down into ENSO correlated and ENSO orthogonal parts. If the ENSO orthogonal part of the sea level is truly independent of ENSO, then it shows what the sea level around Australia would look like without an ENSO effect. Here is the formula for finding the ENSO orthogonal component of the of the sea level data.

 

Conclusion

The highest rise rate during the period covered by this data occurs around 1980.  But that peak was gone before the the beginning of satellite data.  The 1990s and 2000s show some high and low rise rates, but the highs are no higher than the 1930s, and the lows are lower than the 1940s.  Despite some periods of high rise rates in the 1990s and 2000s, the average rise rate does not indicate a large acceleration over the earlier part of the century.  These conclusions are the same whether or not the ENSO correlated part of the sea level is removed.

_________________________________________

Sources

20th century rise rate average of 1.8 mm/year

1. Church and White Global Mean Sea Level Reconstruction

2. Links to Church and White sea level data

Satellite data (about 3 mm/year): CU Sea Level Research Group

RLR tide gauge data: Permanent Service For Mean Sea Level

ENSO/Global warming relationship: Cobb, et. al., Science, 339, 1/4/13

h1

The Search for Acceleration, part 6, Australia

July 17, 2013

magnifying glass 145This is part 6 of a series of posts in which I am searching for a large acceleration in sea level rise rate in the latter part of the 20th century that could reconcile the 1.8 mm per year average rise rate for the century attributed to tide gauge data and the approximately 3 mm per year rise rate for the tail end of the century attributed to the satellite data.

Australia

Australia has only 5 tide gauge stations with data sets that are at least 90% complete going back to 1960, but four of those go back to 1940 or earlier.  I will analyse this data in my usual way (detrend, weight, average, and derivative).

Regional sea level rise rates are usually swamped by things other than just global effects.  In the case of Australia we may be able to disentangle one of these effects – the El Nino Southern Oscillation.  I will also consider the component of the Australian sea level data that is orthogonal to the ENSO3.4 sea surface temperature.

The slide show shows my standard analyse.

This slideshow requires JavaScript.

ENSO

The El Nino Southern Oscillation dominates the sea level around Australia.  The following plot shows an overlay of the detrended weighted average of the five Australian tide gauge sites and the NINO3.4 index from the Hadley Centre.  I am including tide gauge data after 1915 which include at least two tide gauge sites at all times and no large data gaps.  The similarities are obvious.

ENSO sea level overlay

Let’s try to remove the ENSO effect from the sea level around Australia. I will do that by breaking the sea level data down into an ENSO correlated and ENSO orthogonal parts. If the ENSO orthogonal part of the sea level is truly independent of ENSO, then it shows what the sea level around Australia would look like without an ENSO effect.  Here is the formula for finding the ENSO orthogonal component of the of the sea level data.

orthogonal formula440

The top of each of the following slides shows the weighted, detrended, averaged Australian sea level (white), ENSO3.4 sea surface temperature (blue),  and the component of sea level data that is orthogonal to the ENSO3.4 data (red).  The bottom of each slide shows the corresponding relative rise rates associated with sea level (white) and with the ENSO orthogonal component of the sea level (red).  Each successive slide shows the same original data with increasing Gaussian smoothing.

The most important thing to notice is that when the ENSO influence is removed the sea level rise rate at the end of the century is significantly reduced.

ENSO and global warming

If the higher relative rise rates at the end of the century are due to ENSO, then it is interesting to ask whether ENSO fluctuations are greater now (because of global warming?) than in the past.  The best answer to this question can be found in Highly Variable El Niño-Southern Oscillation Throughout the Holocene (Cobb, et. al., Science, 339, 1/4/13).

The abstract states…

Twentieth-century ENSO variance is significantly higher than average fossil coral ENSO variance but is not unprecedented. Our results suggest that forced changes in ENSO, whether natural or anthropogenic, may be difficult to detect against a background of large internal variability.

and the body of the paper mentions…

[T]he detection (and attribution) of any changes in ENSO properties would require very long time series spanning many centuries, to the extent that detection of such changes is even possible.

[M]uch of the observed differences in ENSO variance over the past 7 ky reflect strong internal variability… Relatively robust 20th-century ENSO variability may reflect a sensitivity to anthropogenic greenhouse forcing, but definitive proof of such an effect requires much longer data sets than are currently available, given the large range of natural ENSO variability implied by the available fossil coral data.

Conclusion

According to my usual analysis the rise rate at the end of the century was clearly higher than the average (from 1940 to present), but no higher than the 1940s.   Does the reconcile the satellite data and tide gauge data?  Yes.

But, when the part of the detrended sea level that is correlated to ENSO3.4 is removed, the remaining orthogonal part of the rise rate appears to be lower at the end of the century than during the 1940s, and not particularly high compared to the rest of the century. So if my removal of the ENSO effect is correct, then there was nothing “unusual” about the rise rate at the end of the century
_________________________________________

Sources

20th century rise rate average of 1.8 mm/year

1. Church and White Global Mean Sea Level Reconstruction

2. Links to Church and White sea level data

Satellite data (about 3 mm/year): CU Sea Level Research Group

RLR tide gauge data: Permanent Service For Mean Sea Level

ENSO/Global warming relationship: Cobb, et. al., Science, 339, 1/4/13

Follow

Get every new post delivered to your Inbox.

Join 48 other followers