Posts Tagged ‘Vermeer’


Vermeer and Rahmstorf paper rejected

January 31, 2014

Vermeer and Rahmstorf had a paper rejected by the journal “Climate of the Past.” This news is 16 months old, but I just heard about it, and could find very few references about it on the web.

This paper, On the differences between two semi-empirical sea level models for the last two millennia,  promoted their earlier sea level rise models.  They couldn’t seem to get traction with this paper.

Here are some reviewers’ comments…

One of the major problems with this work is the decidedly biased analysis and presentation.

Highly biased analysis and presentation.

It currently takes significant effort to figure out which pairs of models and training data sets the authors use, and whether they have evaluated all the relevant combinations of the same.

No surprise here.  Rahmstorf has a history of alluding to all kinds of data sets and implying that he has taken them into consideration, but only presenting results for those that support his thesis.

And the final blow…

In the light of the two negative reviews and one comment which all require new analyses and point to fundamental flaws in the methodology of the current paper, I regret to inform you that my conclusion is to support rejection. I strongly dissuade the authors from submitting responses and a revised version.

Here is the paper…

Click for full PDF version

Here is the reviewers’ discussion that lead to the the rejection.

Of course, Vermeer and Rahmstorf do not give up that easily, and similar papers have been shopped around to other journals


Rahmstorf (2011): Robust or Just Busted (Part 4): First results from new code

September 14, 2012

This is part 4 of a multi-part series about “Testing the robustness of semi-empirical sea level projections,” Rahmstorf, et. al., Climate Dynamics, 2011. You can see an index of all parts here. I frequently refer to this paper as R2011.

I will refer to Stefan Rahmstorf’s ”Testing the robustness of semi-empirical sea level projections”  as R2011 [1].

The new code for consistent processing of temperature and sea level data according to the predominant Vermeer and Rahmstorf 2009 model (VR2009)[2] is complete.

It is written LabView V7.1.  There have been several upgrades to LabView since V7.1, but I believe my code will open in any of them.  I prefer this older version of LabView for a variety of reasons that I will not go into here.  But one advantage is that anyone who is interested in running this code can find a used student version of LabView on Ebay at a very reasonable cost.

My code can be downloaded here.

VR2009 input the GISS temperature, Church’s and White’s 2006 sea level data, and modified the sea level data with a correction for reservoir storage from Chao and determined the fit parameters, a, b, and To  for their model…

Rahmstorf and company figured that once a, b, and To were found they could insert hypothesized temperature scenarios for the 21st century into equation 1 and calculate the resulting sea levels.  I have provided a long list of criticisms of their logic.  One of the most devastating observations is that their own source of 20th century sea level data(Church and White, 2006[3]) had revised their data, and the new version of data (Church and White 2009[4] or Church and White 2011[5]) resulted in much lower sea levels by the end of the 21st century when inserted in to equation 1.

Two years ago I reproduced the VR2009 fit parameters, a, b, and To, to demonstrate that I could accurately reproduce their model.

In R2011 Rahmstorf re-works the numbers with the same inputs used in VR2009, and I have reworked the numbers with this new code.  And for the same inputs used back on VR2009, everything lines up within Rahmstorf’s stated uncertainties.  But that is a minor point.  Rahmstorf’s primary objective in R2011 is to defuse my observation that Church’s and White’s newer, more accurate sea level data causes Rahmstorf’s model to yield much lower sea level projections for the 21st century.  Plenty of time to deal with that issue later.

But for now and for the record: in VR2009 Vermeer and Rahmstorf found

a = 5.6 ± 0.5 mm/year/K

b= -49 ± 10 mm/K

To = -0.41 ± 0.03 K

In 2010, using my implementation of their model, I found

a = 5.6  mm/year/K

b= -52 mm/K

To = -0.42 K

In R2011 Rahmstorf presents slightly different numbers than he did in VR2009 for the same input conditions.  Similarly, with my new code I now get slightly different numbers for the same input conditions.

With the new code I found

a = 5.8  mm/year/K

b= -54 mm/K

To = -0.41 K

Presentation of my results

In R2011 Rahmstorf makes some claims based the same model as equation 1, but with various combinations of temperature and sea level data from different sources.  His claim is that he gets essentially the same results – no matter what inputs he uses – indicting that his model is “robust.”

I will also be presenting a lot of results for different possible inputs in the days to come.   But my results will be very detailed, complete, and entirely open for your examination.  You also have access to my complete code.

My code will always generate four files for any set of inputs.  Three of those files are images of: graphs of the input data;  graphs of the model fits to the input data (used to derive a, b, and To); and graphs of sea level projections based on various temperature scenarios for the 21st century, including the SRES emission scenarios used in VR2009 and the RCP45 and RCP85 scenarios used in R2011.  The fourth file is a tab delimited text file with all setup parameters, fit plots and results, and projections.

Note that the graph images of the 21st century sea level projections will not be autoscaled.  That is, the Y axis of the projection graphs will all have the same scaling.  This will make many of the graphs look crowded, but it will also be easy to make a qualitative comparison of the projections from different input data.   You can always open the tab delimited text file in the spreadsheet of your choice and replot the data as you see fit.

Below you can see an example of the graph images and the corresponding tab delimited text file that is generated by my code with the same input data used to find the model fit parameters listed above.  That is, I will use the  GISS temperature, Church and White’s 2006 sea level data and the Chao reservoir correction, which result in my values of a, b, and To, shown above.

The tab delimited text file is shown below.  I have truncated the columns of data (which could be thousands of rows long).   The headers and columns would line up better if you opened the file in a spreadsheet.

Temperature filename: T GISS Land Ocean.txt
Original source:

Sea level filename: SL CW06.txt
Original source:

Modifier filename: RS Chao 2008.txt
Original source: “Impact of Artificial Reservoir Water Impoundment on Global Sea Level”		
Chao, et al., Science 320, 212 (2008)

Minimizing residual: dH/dt
Extension (years): 15.0
Smoothing Gaussian FWHM (years): 15.0
input years used: 1880.0 - 2000.0

a: 5.8
b: -54
To: -0.41
H mse: 1.986
dH/dt mse: 0.250

date	model H (mm)	data H (mm)	H residuals (mm)	model dH/dt (mm/year)	data dH/dt (mm/year)	dH/dt residuals (mm/year)
1880.050000	-76.997238	-76.648275	0.348963	1.252341	0.699570	-0.552771
1880.150000	-76.873236	-76.577572	0.295664	1.240020	0.714500	-0.525521
1880.250000	-76.750402	-76.505711	0.244692	1.228336	0.722720	-0.505615
    |               |                |              |              |                |                |      
    |               |                |              |              |                |                |    
year	RCP45	RCP85	A1B max	A1B mid	A1B min	A1F1 max	A1F1 mid	A1F1 min	A1T max	A1T mid	A1T min	A2 max	A2 mid	A2 min	B1 max	B1 mid	B1 min	B2 max	B2 mid	B2 min
2000.500000	3.564485	3.462285	4.177685	4.330985	4.330985	4.841985	4.688685	4.586485	4.279885	4.228785	4.688685	4.126585	4.382085	4.790885	4.126585	4.841985	4.688685	4.841985	4.841985	4.790885
2001.500000	7.325070	7.132270	8.226370	8.413370	8.668870	8.815270	8.679370	8.997570	7.908170	8.169470	8.730470	8.181070	8.458670	9.178770	8.181070	9.019670	9.037070	8.917470	8.917470	8.923270
2002.500000	11.429255	11.515155	12.424755	12.588555	13.019455	12.938255	12.819755	13.511955	11.681455	12.169255	12.916155	12.283055	12.628055	13.567755	12.334155	13.170555	13.392355	12.568955	12.875555	13.085755
   |               |                |              |              |                |                |      |               |                |              |              |                |                |

Tab delimited text: VR summary 120913-212735.doc

The three associated graph images…

Input data image:

Fit image:

projections image:


[1]  Rahmstorf, S., Perrette, M., and Vermeer, M., “Testing the robustness of semi-empirical sea level projections” Climate Dynamics, 2011

[2] Vermeer, M., Rahmstorf, S., “Global sea level linked to global temperature,” PNAS, 2009

[3] Church, J. A., and N. J. White, “A 20th century acceleration in global sea-level rise“,  Geophys. Res. Lett., 33, 2006


[5] Church, J. A. and N.J. White, “Sea-level rise from the late 19th to  the early 21st Century“, Surveys in Geophysics, 2011


Library of data for testing “robustness” of Rahmstorf models

September 5, 2012

This is part 3.5 of a multi-part series about “Testing the robustness of semi-empirical sea level projections,” Rahmstorf, et. al., Climate Dynamics, 2011. You can see an index of all parts here. I frequently refer to this paper as R2011.

I have finally published my small library of temperature, sea-level and sea-level modifier (reservoir storage, groundwater depletion, etc.)  data from various sources.

All of these data files have a consistent format which can be read by my code that calculates fit parameters for the Rahmstorf model relating sea level to temperature.  However, not all of the time series are long enough to be useful in that model.

You can see the data files here.

I am open to suggestions for additions to this list.  If you have any criticisms of the files, such as accuracy of the data, format, selection, anything – please leave a comment.  I will give due attention to any legitimate criticism that is aimed at improving the data.

Coming soon…

I am a slow worker, but I try to be thorough.

The first output from my code, using Rahmstorf’s preferred inputs (GISS temperature, Church and White 2006 sea level data, and the Chao reservoir correction) will be presented soon.  The goal of that presentation will be two-fold: to verify that of my model implementation are consistent with Rahmstorfs; to have a simple format for presenting those result.  That format can then be applied to the results of other input data.


Get every new post delivered to your Inbox.

Join 48 other followers