Archive for the ‘antarctic’ Category

h1

A new round of Antarctic ice alarm

March 28, 2015

The alarm of a catastrophic meltdown of the Antarctic cycles up and down every year or two.  A journal article says the rate of melt is increasing, the popular press picks up on it and breathlessly warns about huge sea level rises sinking coastal cities around the world. We are told that x number of gigatonnes of ice per year are being dumped off the continent and wreaking their havoc on the world.   Then another study says “not so fast,” the mass losses aren’t that great after all.  Or, some crazy old skeptics ruin all the fun by recklessly bringing some logic to the discussion.

Today we have “Volume loss from Antarctic ice shelves is accelerating” (Paolo, et. al., Science, 2015).  The abstract warns us

“Overall, average ice-shelf volume change accelerated from negligible loss at 25 ± 64 km3 per year for 1994-2003 to rapid loss of 310 ± 74 km3 per year for 2003-2012.”

310 km3 per year (roughly the same as 310 gigatonnes per year) is pretty high compared to most other estimates. So you will probably see many references to this number because the bigger and scarier the more the press likes it.  But for the more sober minded, consider the following comparison of ice loss estimates from “Ice sheet mass balance and climate change” (Hanna, et. al., Nature, 2013)

Various estimates of ice mass change in the antarctic

Various estimates of ice mass change in the Antarctic

How does the recent Science paper compare?  If we place it on estimate plots from Hanna’s paper it would look like this..

Ice sheet mass balance and climate change - Hanna - Nature - 2013 v4

The Paolo Nature paper is an outlier.  But lets take them at their word.  They say that the Antarctic, on average, shed about 300 more Gigatonnes of ice per year during the 2003 to 2012 period than during the 1994 to 2003 period.  Where did all this ice go?  In to the oceans, of course.  That is why we have the great sea level rise scare.

So it follows that the sea level should have been rising faster during the 2003 to 2012 period than during the 1994 to 2003 year period.  How much faster?  Well, every gigatonne of water dumped into the oceans raises the sea level by about 2.78 microns. So 300 gigatonnes of extra water per year would raise the sea levels about an extra 840 microns a year, or about an extra 0.84 mm per year.  We are told that satellite data indicates that the global sea level is rising about 3 mm per year.  0.84 mm per year is a significant fraction of 3 mm per year, so such a rate increase should really stand out in the sea level rise data..

Well, here is some of that satellite sea level rise data…

This slideshow requires JavaScript.

This discussion has been about ice that is moving from the land to the sea and raising the sea level.  But let’s take a quick moment to look at the sea ice that surrounds Antarctica.  While this ice does not contribute to changes in the sea level, it does say something about the conditions in that area.

seaice_anomaly_antarctic - Cryosphere Today 150328

Do you see a trend?  I see a trend.  And I know there are variety of “just-so stories” to explain away this trend, but I am unconvinced.

Conclusion

Between 1994 and 2003 the average sea level rise rate was 3.77 mm/yr, according to satellite data (University of Colorado).  If the Antarctic were depositing an average of about 300 more gigatonnes of water in the ocean per year in the following years (2003 to 2012), then the average sea level rise rage from 2003 to 2012 should have increased by about 0.84 m/yr, to 4.61 mm/yr.

Instead, the average sea level rise rate from 2003 to 2012 dropped to 2.66 mm/yr.

The claim of a huge rise in ice loss from the Antarctic over this period is quite implausible.

h1

Time to recognize approaching Southern Hemisphere disaster

December 26, 2013

I warned the world before, and they ignored me, but the evidence continues to mount. The Southern Hemisphere, and maybe the entire world, is headed for a frozen doom.

All day long polar orbiting satellites fly over the Antarctic and the surrounding ocean and measure the extent of the sea ice.  The amount of ice waxes and wanes with the seasons, ranging from about 2 to 16 million square kilometers between southern summer and winter.

Thirty years of this satellite data have made it possible to calculate the average ice extent for any given day of the year.  The deviation from this average is called the “anomaly.”  It is this anomaly data that reveals the impending drastic changes in the Southern Hemisphere.

Here is the anomaly data for the last three years from the University of Illinois’ Polar Research Group…

advance rate

The anomaly is increasing by half a million extra square kilometers every year!!! To put this in perspective, the Earth has a surface area of about 500 million square kilometers. Roughly speaking, an additional 1/1000th of the Earth’s surface is covered by ice each year. Consider that the Southern Hemisphere sea ice maxes out at about 16 million square kilometers each year, then 32 years of the current increase rate would double this amount.

By 2050, a mere 36 years from now, the ice encased Tierra Del Fuego on the southern tip of South America will replace Greenland as the most ironically named place on Earth.  By 2100 the dairy farms surrounding the town of Gore in the Southern Plains of the South Island of New Zealand will be a frozen mockery to the same-named purveyor of global warming alarmism.

Here is what is in store for the Southern Hemisphere…

This slideshow requires JavaScript.


You can’t deny this.  This is science!  My conclusion is based on the proven analysis techniques of NASA climate scientist Jay Zwally.

Has the 21st century brought us to a tipping point?

All the best data indicates that a tipping point has already occurred.  Think about this: according to NOAA data (see here and here) 8 out of 10 years with greatest Southern Hemisphere sea ice extent have occurred since 2000!  Here they are in order…

  1. 9/14/13
  2. 9/24/12
  3. 9/24/06
  4. 9/24/09
  5. 9/29/05
  6. 9/28/00
  7. 9/8/04
  8. 9/29/07

We also now know that the all time low temperature for the Antarctic was reached in 2010.  Satellite data shows that on August 10th, 2010, the Antarctic temperature descended to 136 ºF (minus 93 ºC).  This shattered the previous record of minus 128.6 ºF (minus 89.2 ºC), set in 1983.

That is a drop in the minimum recorded temperature of 7.4 ºF in a mere 27 years.  If that continues, as indicated by Jay Zwally type analysis, then the low temperature by 2100 could be minus 159 ºF (minus 106 ºC)!!!

The effects are already being felt

It is now the warm season in the Southern Hemisphere.  Sea ice is making its seasonal retreat, yet the Russian cruise ship, Akademik Shokalskiy, is trapped in the sea ice with “52 tourists, scientists and explorers” and a crew of 22.  You would think the combined brains of all those scientists on board would have kept them out of the zone of freezing water.  While the ship’s brochure points out that “Views are excellent from the large, open decks and the Navigation Bridge'” maybe they couldn’t see the ice coming from the vantage point of the “Lounge and bar, open late afternoon and evening with a wide selection of wines and spirits” (an essential feature of all scientific research vessels).  Our prayers go out to the scientists and others on this harrowing adventure as ice breakers race to free them the frozen grip of the sea.  I hope the sauna stays warm and the booze holds out until they get there.

Why the great silence?

Where are the voices of leading scientists and environmentalists?  Why haven’t you seen anything about this impeding hemispheric disaster on the front pages of the news papers or on prime-time news reports?  A subsequent post will soon answer those questions and break this issue wide open.  

Stay tuned…

h1

The Thermohaline Circulation Only Stops for Extreme, Unrealistic Models

June 4, 2009

Return to Criticisms of Al Gore’s “An Inconvenient Truth”

Gore gives a cartoon description of the ocean circulation system when he explains what has become known as the thermohaline circulation, or the meridional overturning circulation.  In his simplistic scenario the surface ocean current that flows north in the Atlantic, bringing warmth to northern Europe will be halted by melting ice from Greenland, subsequently throwing Europe into an ice age. 

Here is Gore’s explanation in his own words from the Inconvenient Truth movie:

The Earth’s climate is like a big engine for redistributing heat from the equator to the poles.  And it does that by means of ocean currents and wind currents.  They tell us, the scientists do, that the Earth’s climate is an non-linear system – just a fancy way they have of saying that the changes are not all just gradual, some of them come suddenly, in big jumps… And so, all those wind and ocean currents that have formed since the last ice age and have been relatively stable – they’re all up in the air – they change. 

And one of the ones they’re most worried about, where they’ve spent a lot of time studying the problem is in the the North Atlantic where the gulf stream comes up and meets the cold winds coming off the Arctic over Greenland and that evaporates the heat out of the gulf stream and the steam is carried over to western Europe by the prevailing winds and the Earth’s rotation.  But isn’t it interesting that the whole ocean current system is all linked together in this loop, they call it the ocean conveyor.

vlcsnap-324533And the red are the warm surface currents, the Gulf Stream is the best known of them.  But the blue represent the cold currents running in the opposite direction…

vlcsnap-32114Up in the North Atlantic, after that heat is pulled out, what’s left behind is colder water, and saltier water, because the salt doesn’t go anywhere. And so, that makes it denser and heavier.  And so that cold heavy dense water sinks at the rate of 5 billion gallons per second.  And then that pulls that current back south.ani-21

At the end of the last ice age as the last glacier was receding from North America the ice melted and a giant pool of fresh water formed in North America, and the Great Lakes are the remnants of that huge lake.  An ice dam on the eastern border formed, and one day it broke, and all that fresh water came rushing out, ripping open the St. Lawrence there, and it diluted the salty dense cold water, made it fresher and lighter so it stopped sinking, and that pump shut off.

 vlcsnap-549956-smallAnd the heat transfer stopped.  And Europe went back into an ice age for another 900 to 1000 years.  And the change from conditions like we have here today to an ice age took place in perhaps as little as ten years time.  So that’s a sudden jump.  Now, of course, that’s not going to happen again because the glaciers of North America are not there… Is there any other big chunk of ice anywhere near there…?  Oh, yeah [Gore says ominously, as the image pans to ice covered Greenland] we’ll come back to that one…

Later in the movie Gore tells us that Greenland is rapidly melting.  The point being that it will provide a massive amount of fresh water that will stop the the thermohaline conveyor and  “would raise sea level almost 20 feet if it ‘went,'” Gore tells us.  He tells us about water seeping to the bottom of the ice sheets where it “lubricates where the ice meets the bedrock” causing the ice to slide toward the ocean.

Then he shows a series of pictures purporting to show the amount of melting in Greenland.  Gore says…

ani-31

“In 1992 they measured this amount of melting in Greenland … Ten years later this is what happened…And here’s the melting from 2005”

 

Hosing Experiments

But what if…?  What if there were a huge amount of low density fresh water dumped into the North Atlantic where the high density water is supposed to be sinking, just like the giant Canadian lake crashing through the barrier of ice the Gore told us about?  This possibility is explored with computer models known as  “hosing experiments.”  In a hosing experiment a model that simulates the ocean and atmosphere circulation patterns is modified to artificially dump huge amounts of extra fresh water, as if from a giant hose, into some location in the ocean.   It has been found that when enough fresh water is forced in, the circulation can be slowed, but rarely stopped

How much fresh water do the hosing experiments use to nearly stop the thermohaline circulation?  Typically (or here), they use one million cubic meters of fresh water per second, for 100 years!!!  (One million cubic meters per second has its own unit name: One Sverdrup or 1 Sv).  How does 1 Sv compare to, say, the rate of water flowing over Niagara Falls?

Niagara falls168,000 cubic  meters of water fall over Niagara Falls every minute.  That is about 2,800 cubic meters of water per second.  So one Sverdrup of water is the same as about 350 Niagara Falls!  (1,000,000 / 2,800  = 357).  So, roughly speaking, if 350 Niagara Falls were dumped into the oceans around Greenland continuously for 100 years, then we could expect to see a significant slow down of the thermohaline circulation.

River systems discharging into the Arctic Ocean.

River systems discharging into the Arctic Ocean.

How does one Sverdrup compare to the freshwater discharge of ALL the rivers emptying into the arctic ocean?  One Sverdrup of fresh water amounts to nearly 32,000 km3 of water per year  (1 Sv  x 106 m3 s-1/sv x (86,400 s/day) x (365 day/year) = 31,536 km3/year).  The total fresh water discharge from all rivers into the arctic is only about 4,300 km3 per year.  So, typical hosing experiments that nearly stop the overturning circulation add a water volume about 7 times the amount of water from all rivers discharing into the Arctic Ocean combined.

What about Greenland?

Hosing copyGore ominously implies that the amount of fresh water needed to turn off the overturning circulation is just waiting to pour off of  Greenland, due of course (drum roll), to CO2 induced anthropogenic global warming.   His pictures of Greenland, shown above, imply that about half of Greenland’s 2.8 million cubic kilometers of ice have melted in the 13 years between 1992 and 2005.  This is wildly misleading.  Only a miniscule fraction of the area shown in Gore’s Greenland images actually melts every year.   This is evidenced by mass balance studies, which show Greenland loses on the order of hundred cubic kilometers of ice every year,  which translates into a measly 0.003 Sverdrups.

100 km3 /year= 1011 m3/year

(1011 m3/year) / (365 days/year) / (86,400 seconds/day)
             = 3 x 103 m3/second
             = 0.003 Sv

Put another way, one Sverdrup of fresh water is 86.4 km3/day.  So the hosing experiments pouring in one Sverdrup put about as much fresh water into the ocean each day (86.4 km3) as Greenland provides in a year (100 km3).

But if Greenland actually started melting, by some extraordinary circumstance,  300 times faster, then it would yield 1 Sverdrup, or 1,000,000 cubic meters, of fresh water every second.  What would happen after 100 years of melting at that rate?  Well, that’s a trick question, because at a melting rate that gives 1 Sverdrup of freshwater Greenland would run out of ice in about 90 years.  This is because Greenland has only 2.85 million cubic kilometers of ice, and one Sverdrup of water is the same as about 31,500 cubic kilometers of water per year.  Ignoring the difference in density between ice and water, then 2.85 million cubic kilometers divided by 31,500 cubic kilometers per year gives 90 years.

Conclusion

You don’t hear as much about the threat of the collapse to the thermohaline circulation today as you did a few years ago.  This is because it has become recognized as being a very far fetched possibility, even by most alarmists who want to maintain a shred of dignity.  But I have a feeling we will not see this wildly exaggerated threat removed from new editions of Gore’s “An Inconvenient Truth” anytime soon.

Return to Criticisms of Al Gore’s “An Inconvenient Truth”