Archive for the ‘arctic’ Category

h1

Reply to John Mashey

May 27, 2009

I recently had an exchange of comments with some folks at Millard Filmore’s Bathtub concerning one of my previous posts about sea level rise near Boston.  The discussion seemed to really strike a nerve with alarmist nag John Mashey.  He scolded me with the following comment- you can almost see him wagging his finger:

Mashey’s comment

Mr Moriarity’s views on SLR at this time are simply not worth reading, for reasons I will explain.

NOAA collects the data, but the past is not the future. For very good scientific reasons, NOBODY serious about climate science does a simple linear projection of last century’s trendline into the next one, unlike Mr. Moriarty’s suggestion.

That would be about as silly as claiming solar PV [invented where I used to work] scientists should already be getting 100% efficiency.

Within ~30 minutes’ of Tom’s NRELare places thick with expert climate scientists, which makes him one of the lucky people who can easily go talk to experts:

NCAR
UC Boulder
USGS-Denver

I’m a AAASmember: I did a quick search of Science (An adequately prestigious journal) for “sea level rise”, and from the first hit page picked out a few recent SLR articles by Colorado authors, all of which I’d already read, along with the relevant IPCC TAR and AR4 chapters, etc, etc. (*I’m* no SLR expert, but I often talk to people who are. )

Mr. Moriarty has strong views on SLR, and surely is a AAAS member and has read these papers, all of whom think SLR will be a serious (acclerating) problem. He *could* write an article for Science showing them wrong, which would make him (properly) famous, given the mass of physics that would haveto be overturned to preserve a simple linear trend.

See How Much More Global Warming and Sea Level Rise?, 2005, 8 authors from NCAR.

See Paleoclimatic Evidence for Future Ice-Sheet Instability and Rapid Sea-Level Rise”, 2006, of whose 6 authors, 2 are at NCAR,1 at UC-Boulder, and 1 at USGS-Denver.

See Glaciers Dominate Eustatic Sea-Level Rise in the 21st Century”>,2007, of whose 8 authors, 5 are at UC Boulder.Kinematic Constraints on Glacier Contributions to 21st-Century Sea-Level Rise, 2008, of whose 3 authors one is at UC-Boulder.

See “On the basis of calculations presented here, we suggest that an improved estimate of the range of SLR to 2100 including increased ice dynamics lies between 0.8 and 2.0 m.”

(That’s probably as good a single estimate as you get right now. People are trying to model melt dynamics for places that have been frozen through recorded human history, complexified by various nonlinear effects, tipping points, etc. Ice-sheet issues are *hard*.)

NCAR says Community Ice Sheet Model Will Aid Understanding of Sea Level Rise.

“Scientists think that this mechanism might trigger the rapid retreat of the West Antarctic Ice Sheet – which could raise sea level by a meter or more within a century or less.”

See Dan Cayan (SCRIPPS)talk @ SFBCDCconference a year ago. This was not news,but right in line with mainstream science.

Specifically, see p 18-19, noting that some of the models are from NCAR. I used to sell supercomputers to NCAR and talk to their scientists. They are quite competent.

NCAR and USGS (and some of UCBoulder) are Federally-funded to do good science for us all. If Mr. Moriarty denigrates *their* work, he might want to think about the fact that most of *his* career has been supported by *Federal* tax money.

That’s money from me and the companies I’ve worked for. My home state (CA) since 1983 is far and away the biggest *net* contributor to the Federal budget, and none of NCAR, NREL, Fermilab, or Argonne are here, but we helped pay for them. [And this is OK with me, since I like to think America is a *country*, not just a collection of independent states; all those labs have made good contributions.]

LOOKING AHEAD
NCAR has regular lectures. So does UC-BOulder’s NSIDC.

If Mr. Moriarty actually wants to learn about the science, he has *real* experts nearby to visit, often.

I’m done.

My reply

John thanks for the thoughtful comment.  I hope you have had a chance to wind down get off your high horse during the holiday weekend.

Congratulations on being a AAAS member.  So am I.  And so are 120,000 other people.  For those of you who are impressed by John’s membership in the AAAS, let me fill you in on the strict requirements for membership.  Send a check – then you are a member. 

Oh, by the way, thanks for inventing solar PV, I guess without you I wouldn’t have a job.

Let’s talk about the papers you cited: 

#1  How Much More Global Warming and Sea Level Rise?  Science 18 March 2005: Vol. 307. no. 5716, pp. 1769 – 1772. 

John, did you actually read this paper?  Meehl, et. al., consider three possible scenarios from the Special Report for Emissions Scenarios (SRES).  Specifically, scenarios B1, A1B, and A2.  They ran two models on each of these scenarios. Here is what they found for 21st century steric sea level rise:

Low range scenario B1, model PCM: 13 cm

Low range scenario B1, model CCSM3: 18 cm

Low range scenario A1B, model PCM: 18 cm

Low range scenario A1B, model CCSM3: 25 cm

Low range scenario A2, model PCM: 19 cm

Low range scenario A2, model CCSM3: 30 cm

Let me translate that:  Under their worst case scenario and their most sensitive model you get 30 cm (12 inches) by 2100  Wow – pretty scary.  Note that the map at  “Impacts of Sea Level Rise on the California Coast,” which I mentioned in my earlier comment to alleviate your fear of the west coast going under water, and in which you need to zoom way, way in to even find the affected areas, were based on a much greater 140 cm (56 inch) sea level rise by 2100.

So John, why did you cite this paper.  Let me guess: You read the abstract and saw the words “additional 320% sea level rise.”  But you didn’t actually read the article, did you? These numbers don’t exactly fit the alarmists’ (Gore and Hansen for example) picture of cities under water by the end of the century.

#2  Paleoclimatic Evidence for Future Ice-Sheet Instability and Rapid Sea-Level Rise , 24 March 2006: Vol. 311. no. 5768, pp. 1747 – 1750

This paper has a preposterous flaw.  It assumes a 1% yearly increase in atmospheric CO2 levels for the 21st century.  That sounds pretty innocuous – “What’s the problem with the assumption of a 1% increase?”, you might ask.  The problem is that the actual increase is about 0.5% per year.  Check this yourself here.  (By the way, John, that’s a NOAA website.  NOAAis one of those entities with labs in Boulder that you imply I have never heard of.)  This 0.5% trend has been fairly consistent for decades.  You can get the raw data from Mauna Loa, take the derivative, even take the second derivative, and see that 1% is preposterous. 

You might say “Big deal, 0.5% or 1%, what’s the difference.”  This is like a compound interest problem.  Take 1.005 to the 100th power (0.5% increase for 100 years) on one of your super computers, then take 1.01 to the 100th power (1% increase for 100 years).  The rest of you readers can simply try this on your desktop scientific calculator.  See the difference?  Pretty big, isn’t it?

Here is a paper that you seem to have overlooked in your comprehensive literature search: An overview of results from the Coupled Model Intercomparison Project, Covey, et. al., Global and Planetary Change, Vol 37, 2003. 

Covey et. al. write about the same 1% per year CO2 increase, but warned “The rate of radiative forcing increase implied by 1% per year increasing CO2 is nearly a factor of two greater than the actual anthropogenic forcing in recent decades, even if non-CO2 greenhouse gases are added in as part of an “equivalent CO2 forcing” and anthropogenic aerosols are ignored.”  They conclude that this 1% “ increasing-CO2 scenario cannot be considered as realistic for purposes of comparing predicted and observed climate changes during the past century.”

#3  Glaciers Dominate Eustatic Sea-Level Rise in the 21st Century, Meier, et. al., Science, 24 August, 2007, Vol 317, 1064-1067

Meier, et. al, calculated a 560 mm rise in sea level due to melting ice by 2100 based on an accelerating rate of global ice melting.   They managed to concluded that the amount of ice melting each year had been, on the average, 32 Gigatonnes (Gt) greater than the previous year from 1995 to 2005.  They simply extrapolated this yearly 32 Gt increase out to 2100.   A 32 Gt yearly increase in the amount of global ice that melts each year, over the 10 year period from 1995 to 2005, would mean 320 Gt more ice was melting in 2005 that in 1995.  That translates into a sea level rise rate in 2005 that must have been 0.9 mm greater than the sea level rise rate in 1995 (320 Gt/year x  2.7 microns/Gt  = 0.9 mm/year).

But we have very good sea level rise data that covers the period from 1995 to 2005.  And John, you will be delighted to know that this data is maintained by the University of Colorado, in Boulder.

sea level rise

Take a good look.  Note that the sea level rises a rate of 3.2 mm per year from 1995 to 2005 as indicated by the line fit and the notation in the bottom right corner.  It does not start out at 3.2 mm per year in 1995 and go to 4.1 mm per year (3.2 mm/year + 0.9 mm/year) by 2005.  The rise rate clearly does not increase by 0.9 mm per year over that period of time. 

What should have happened by 2009?  Well, according to Meier the global rate at which water was added to the oceans should have continued increasing by an additional 32 Gt/year and therefore there should be 448 Gt { (2009 – 1995) x 32 Gt/year = 448 Gt/year) } more water added to the oceans per year in 2009 than in 1995.  That translates into a rise rate that is 1.2 mm/year greater in 2005 than in 1995.  If the slope of the line fit in the above graph were actually 3.2 mm/year in 1995, then by Meier’s logic it should have been 4.4 mm/year by 2009.  However, the graph clearly shows that, if anything, the rise rate is less in 2009 than in 1995.

Please feel free to actually read the paper by Meier, et. al.  Please examine their source of data and their data reduction.  Here is a nice sample of how they determined that the amount of ice melting from glaciers and ice caps (as opposed to ice melting form the Greenland or Antarctic ice sheets) is increasing:

 Figure 1 from Meier

They took a scattered set of Meier’s own data, showing the melting rate of glaciers and ice caps, and fit it to a line.  It is traditional to give some numerical indication of the quality of a line fit.  In this case Meier chose not to provide such an indication.  So I digitized his data and did it for him: the r-squared value of this data is less than a dismal 0.1.  They found the slope of the line to be 11.9 Gt/year/year and thus concluded that for each year between 1995 and 2005 the glaciers and ice caps were losing 11.9 Gt more ice than the previous year.  Then they extrapolated that rate out another 95 years.  To extrapolate a function out 10 times the actual data’s domain is risky under any circumstances.  When the data is this scattered as this, it is just plain silly. 

They then undertook equally rigorous analysis of ice changes from the Greenland ice sheet, the West Antarctic ice sheet and the East Antarctic ice sheet, added the results together and came up with their 32 Gt/year/year acceleration rate.

#4.  Kinematic Constraints on Glacier Contributions to 21st-Century Sea-Level Rise, Pfeffer, et. al., Science, 5 September 2008, Vol. 321. no. 5894, pp. 1340 – 1343

To their credit, Pfeffer et. al., work in this paper to put an upper limit on the sea level rise by 2100.  This immediately separates them from the wildest alarmists like Al Gore and James Hansen.  Their conclusion is the maximum sea level rise by 2100 is 2 meters.  But they say in the abstract “More plausible but still accelerated conditions lead to total sea-level rise by 2100 of about 0.8 meter.”  This is still quite high and apparently caught your eye, right John?

But what must happen for this 0.8 meter sea level rise?  Pfeffer et. al., use the following logic:

“Rapid, dynamically unstable discharge of ice through calving is restricted to glaciers with beds based below sea level. We identified and calculated the aggregate cross-sectionalarea of Greenland’s marine- terminating outletglaciers by using surface and bed topography (16) and measured ice velocities (5) to identify all potential pathways for rapid discharge, including channels presently flowing rapidly as well as potentially unstable channels (Fig. 1 and table S1). Cross-sectionalareas (gates) for each outlet were calculated at the point of greatest lateral constriction by bedrock in the glacier’s marine-based reach. Ice stream widths in Antarctica can vary in time, but for Greenland outlet glaciers cross-sectional areas are constrained almost entirely by bedrock topography. Of the 290 km2 total aggregate gate cross-sectional area, we identified 170 km2 as the aggregate marine based gate area where drainage to the ocean is not blocked by near coastalsills standing above present day sea level. All dynamic discharge (Table 2) must pass through these gates by 2100 to meet2- to 5-m SLR targets. We considered four scenarios: velocities were calculated for both the “marine based” gate (170 km2) and the “total aggregate” gate (290 km2) given both projected SMB and 10× inflated SMB losses. We then considered whether those velocities are realistic.”

They note that “The present-day average velocity of all Greenland outlet glaciers is 0.56 km/year when weighted by drainage basin area or 1.23 km/year when weighted by gate cross-sectional area.”  For the large sea level rises that they consider, these velocities must increase.  If we just look at the case that requires the smallest velocity increase to reach 2 meters of sea level rise by 2100 (i.e. the case that most favors your argument), then Pfeffer reports that the velocity for the discharge gates must go up to at least 26.8 km/year.

And they don’t say that this velocity must be achieved after 100 years of a slow acceleration.  Rather, they say “These velocities must be achieved immediately on all outlets considered and held at that level until 2100. Delays in the onset of rapid motion increase the required velocity further”

As you can see, the 2 meter rise requires the glacier velocity at the discharge gates to increase by at least a factor of 22. Right Now. Today. And then remain at that extraordinary velocity until 2100, winter, spring, summer and fall.

Here are some statements from the paper concerning their own velocity calculations: “The scenario velocities far exceed the fastest motion exhibited by any Greenland outlet glacier.”  “A comparison of calculated (Table 2) and observed (1.23 km/year) average velocities shows that calculated values for a 2-m SLR [sea level rise] exceed observations by a factor of 22 when considering all gates and inflated SMB and by a factor of 40 for the marine gates without inflated SMB [surface mass balance], which we consider to be the more likely scenario.”  “Although no physicalproof is offered that the velocities given in Table 2 cannot be reached or maintained over century time scales, such behavior lies far beyond the range of observations and at the least should not be adopted as a central working hypothesis.”

By extension, the glaciers would have to increase velocity by a factor of 9, today, right now,  and continue at that rate until 2100 to achieve the 0.8 meters. 

What would cause the glaciers to increase their velocity to such an extent?  The going theory at the time the Pfeffer paper was written was that melting water would make its way to the bottom of the glaciers and lubricate their motion to the sea.  Even Al Gore talks about this in his famous “An Inconvenient Truth.”  But data subsequent to the Pfeffer paper have shown that not to be the case. “Large and Rapid Melt-Induced Velocity Changes in the Ablation Zone of the Greenland Ice Sheet,”  R. S. W. van de Wal, et al., Science 321, 111 (2008).

Van de Wal, et. al., note:

Here, we present ice velocity measurements from the major ablation area along the western of the ice sheet. The data set contains simultaneous measurements of ice velocity and ablation rates, which makes it possible to study the relation between ice velocity and meltwater input on longer (>5 years) and shorter (~1 day) time scales…

Annually averaged velocities are completely decorrelated to the annual mass balance, whereas a correlation might be expected if there is a strong feedback between velocities and melt rate, leading to enhanced flow, surface lowering, and increased melt rates…

In earlier work (4, 7), it has been suggested that the interaction between meltwater production and ice velocity provides a positive feedback, leading to a more rapid and stronger response of the ice sheet to climate warming than hitherto assumed. Our results are not quite in line with this view. We did not observe a correlation between annual ablation rate and annual ice velocities. Ice velocities respond fast to changes in ablation rate on a weekly time scale. However, on a longer time scale, the internal drainage system seems to adjust to the increased meltwater input in such a way that annual velocities remain fairly constant. In our view, the annual velocities in this part of the ice sheet respond slowly to changes in ice thickness and surface slope.

So, it looks like you will have to live with the disappointing news that the planet is not doomed by rapid sea level rise after all.  And your approval for grand plans to save places like Boston and San Francisco may not be needed.  Don’t lose hope though, with any luck the planet will be threatened by a giant meteor and the services of your brilliant mind will be needed after all.

h1

Arctic sea ice gone by 2015? A challenge to David Barber.

December 10, 2008
Here we go again. Last March I wrote about the media predictions that the Arctic sea ice would be gone by the summer of 2012. As I showed back then, those wild predictions were based on a simple extrapolation of the minimum summer sea ice extents of 2006 and 2007.

 

I’ll repeat the basic facts:

The sea ice area in the Arctic has been monitored by satellite for almost 30 years, since 1979. The area of the ice rises and falls, as you would expect, as the year cycles through its seasons. It reaches its yearly minimum by late September or early October. On the average, this minimum has been declining for the last 30 years. After October the northern sea ice area increases until it reaches a maximum in late March or early April each year. The yearly cycle is huge. Typically, about 60% of the total sea ice area melts away as is goes from yearly maximum to the yearly minimum.

The 2007 melt season was very severe and the Arctic sea ice area anomaly reached its lowest level since satellite tracking began.  But that low level was immediately followed by an unprecedented rise in sea ice area in the Arctic in the months following the 2007 summer melt season. The 2008 melt season was quite severe, but not as severe as the 2007 melt season. In order to go from the minimum ice extent of 2007 to zero ice in 2012, the Arctic sea ice extent minimum needs to drop an average of about 600,000 square kilometers per year. But the Arctic ended up with slightly more ice area (about 100,000 square kilometers more) after the 2008 melt season than after the 2007 melt season.  Figure 1, below sums it up.

Figure 1

Figure 1

New predictions of meltdown

Now along comes David Barber  from the University of Manitoba, who estimates that the Arctic Basin will be ice free by the summer of 2015. The Star Phoenix reports:

The ice that has covered the Arctic basin for a million years will be gone in little more than six years because of global warming, a University of Manitoba geoscientist said. And David Barber said that once the sea ice is gone, more humans will be attracted to the Arctic, bringing with them even more ill effects…He said he estimates the Arctic sea should see its first ice-free summer around 2015…Barber has said before the Arctic basin would be free of summer sea ice some time between 2013 and 2030. But their research about recent changes in the Arctic has allowed them to pinpoint the date even closer.

Barber sounds like a smart guy, and was the scientist in charge of a $40-million Arctic research project, the Circumpolar Flaw Lead System Study. He will present his preliminary findings at the International Arctic Change 2008 conference  in Quebec. However, his track record for predictions is rather spotty. Earlier this year National Geographic reported:

“We’re actually projecting this year that the North Pole may be free of ice for the first time [in history],” David Barber, of the University of Manitoba, told National Geographic News aboard the C.C.G.S. Amundsen, a Canadian research icebreaker.”

Prediction for summer of 2008 didn’t work out

The Arctic sea ice concentration reached its minimum around September 15th this year. Figure 2, below, from the Polar Research Group at the University of Illinois, shows the distribution of ice in the Arctic on that day. As you can see, the North Pole was not even close to being ice free. Figure 3 shows the Arctic Basin sea ice area for the last 365 days. Note that in mid-September the the sea ice area anomaly for the Arctic Basin was about negative 0.75 million square kilometers, but there were still 2.5 million square kilometers of ice yet to melt. Again, not even close to zero.

Figure 2

 Figure 2. Arctic Sea Ice Concentration on September 15th, 2008, when the Arctic sea ice reached its minimum for the year. Image from the University of Illinois Polar Research Group.

Figure 3. Figure 3. Arctic Basin sea ice area for the last 365 days.  In mid-September the sea ice anomaly was negative 0.75 million square kilometers, but there were 2.5 million square kilometers more than zero.  Image from the University of Illinois Polar Research Group.  Click on image to see clearer version. 

 
Those who like to parse words will note that National Geographic piece did not quote Barber as saying the “Arctic Basin” or the “Arctic Ocean” would be ice free during the summer of 2008.  They will correctly point out that he said “the North Pole.”  My answer to that is “So what.”  The North Pole has certainly seen open water in modern times, as attested to by the following images:
Figure 4.

 Figure 4. Skate (SSN-578), surfaced at the North Pole, 17 March 1959. US Navy photo courtesy of tripod.com. This image is from NavSource Online: Submarine Photo Archive

Figure 5.

 Figure 5. Seadragon (SSN-584), foreground, and her sister Skate (SSN-578) during a rendezvous at the North Pole in August 1962. Note the men on the ice beyond the submarines. USN photo from The American Submarine, by Norman Polmar. This image is from NavSource Online: Submarine Photo Archive

 

What about Barber’s prediction for 2015?

The December 5th StarPhoenix article mentioned above says that according to Barber, “The ice that has covered the Arctic basin for a million years will be gone in little more than six years because of global warming.”  I wonder if Barber can seriously believe that the Arctic Basin has been continuously ice covered for “a million years.”  There is considerable evidence  that the entire Arctic region was warmer just several thousand years ago than it is now. 

Open water from the northern coast of Greenland to the North Pole likely occurred in the not too distant past.  According to Science Daily, Astrid Lysa and colleagues have studied shore features, driftwood samples, microfossils and shore sediments from Northern Greenland. Science Daily reports:

 “The architecture of a sandy shore depends partly on whether wave activity or pack ice has influenced its formation. Beach ridges, which are generally distinct, very long, broad features running parallel to the shoreline, form when there is wave activity and occasional storms. This requires periodically open water,” Astrid Lyså explains.

Pack-ice ridges which form when drift ice is pressed onto the seashore piling up shore sediments that lie in its path, have a completely different character. They are generally shorter, narrower and more irregular in shape.

“The beach ridges which we have had dated to about 6000-7000 years ago were shaped by wave activity,” says Astrid Lyså. They are located at the mouth of Independence Fjord in North Greenland, on an open, flat plain facing directly onto the Arctic Ocean. Today, drift ice forms a continuous cover from the land here.

Astrid Lyså says that such old beach formations require that the sea all the way to the North Pole was periodically ice free for a long time.

“This stands in sharp contrast to the present-day situation where only ridges piled up by pack ice are being formed,” she says.

Funder and Kjaer reported similar results at the 2007 fall meeting of the American Geophysical Union. They point out that “Presently the North Greenland coastline is permanently beleaguered by pack ice…” but “that for a period in the Early Holocene, probably for a millennium or more, the Arctic Ocean was free of sea ice at least for short periods in the summer.” They date this time period to sometime between 8500 and 6000 years ago.  (Update 7/8/10 – Funder now believes “that multiyear sea ice was reduced to between half and a third of the present during the Holocene Thermal Optimum.”  Thanks to Kevin O’Neill and his persistence  in making this correction.)

An Open Challenge to David Barber

I am concerned about climate exaggerations and the effect  they have on public policy makers.  It seems quite clear that David Barber was off the mark when he predicted that “this year that the North Pole may be free of ice for the first time,” because neither the Arctic Ocean, the Arctic Basin nor the North Pole were ice free this past summer.  The North Pole being ice free is not that unusual, and the entire Arctic was probably ice free a relatively short 7,000 years ago.

Now Barber has made the slightly longer term prediction that “The ice that has covered the Arctic basin for a million years will be gone in little more than six years.”  I propose a friendly wager based on this prediction.  I will bet David Barber $1000(US) that the ice covering the Arctic Basin will not be gone anytime before December 31st, 2015.  The bet would involve no transfer of  cash between myself or Barber, but rather, the loser will pay the sum to a charitable organization designated by the winner.

 Definition of terms.  The Arctic Basin is defined by the regional map at Cryosphere Today.  “Gone” means the Arctic Basin sea ice area is less that 100,000 square kilometers, according to National Center for Environmental Prediction/NOAA as presented at Cryosphere Today .  Charitable organizations will be agreed upon at the time the bet is initiated. 

David Barber is a smart guy and evidently an expert in his field.  Taking on a wager with an amateur like me should be like shooting fish in a barrel.  I look forward to reaching an agreement soon.

h1

An easy climate change / energy quiz

November 13, 2008

Here is a simple, fun, 10 question quiz that covers a sample of climate change and/or energy issues.   Simply check the appropriate box and push the “vote” button for each question.  After you have pushed the vote button you will see the accumulated wisdom of everybody who has answered that question so far.  You can even leave a comment for any question, which I encourage.

Note that several of the questions requiring numerical answers have “order of magnitude” choices.   That is, they require “back of the envelope” type approximations, not high precision.

At the bottom of the quiz you will find a link to a solutions page, with links to supporting evidence, and “back of the envelope” calculations.  If you want, you can look at the solutions first and then take the quiz – but that would be cheating!

After enough people have answered the questions I will post the results at ClimateSanity.

Have fun!

 QUESTION 1. 

 Here are five false color images of the sea ice in the arctic.  The images represent the ice on five year intervals on July 18th of 1988, 1993, 1998, 2003, and 2008.  Your task is to use your knowledge of changing conditions in the Arctic to put them in the proper chronological order.  Note that each image uses the same color scale (shown in the upper left corner of each image) to indicate the density of ice as a function of position. 

Image 1

Image 2

Image 3

Image 4

Image 5

 

Question 2

 

Question 3

In the fall of 2007, after the northern summer melt season, the Arctic sea ice extent anomaly reached its lowest level since satellite monitoring began in 1979.  This was followed by warnings that the Arctic ice could be completely gone by the summer of 2012. 

 

Question 4

In 1979 the worst nuclear accident in US history happened at Three Mile Island nuclear power plant near Middletown, Pennsylvania. 

 

Question 5

A rising sea level is one of the feared symptoms of global warming.  According to the Jason and Topax satellite tracking of ocean levels, the average sea level rise rate for the last 10 years has been about 3.2 mm per year.  This is interpreted by some to indicate an accelerating sea level rise rate.  IPCC expert Simon Holgate’s 2004 data (Holgate, S.J., and P.L. Woodworth, 2004: Evidence for enhanced coastal sea level rise during the 1990s. Geophys. Res. Lett., 31, L07305, doi:10.1029/2004GL019626.) was prominently featured in the IPCC’s Fourth Assessment Report (AR4, Working Group 1: The Physical Science Basis of Climate change, Chapter 5).  In a more recent 2007 paper (S.J. Holgate, “On decadal rates of sea level change during the twentieth century“, Geophysical Research Letters34: GL019626 (2007)., Holgate reconstructed sea level rise rates from high quality tidal gauge data going back to about 1900.

 

Question 6

NASA Scientist James Hansen estimated a sea level rise of 15 feet for the 21st century.

 

Question 7

The northern coast of Greenland is at 83.5 degrees north latitude.  It is the closest land to the North Pole.  Satellite data since 1979 has always shown this region locked in sea ice.  If global warming were to result in an ice free arctic sometime during this century, it is believed that this area would be the last place to lose its summer ice.

 

Question 8

Compact fluorescent light bulbs use only 25% of the energy of an incandescent light bulb to give the same number of lumens of light.

 

Question 9

 

Question 10

Since 1963 Africa’s Lake Chad has experienced severe shrinkage.  While atmospheric CO2 levels have continuously increased since 1963, the surface area of the lake has dropped from about 25,000 square kilometers to about 1,500 square kilometers.  This fact has been presented by Al Gore and others as a consequence of anthropogenically induced global warming.  Of course, this evidence must be considered in comparison to how the lake was changing when CO2 levels were not increasing. 

 *********************

***Click here for quiz solutions***

 *********************

h1

I’m curious about Canadian Archipelago sea ice area

October 16, 2008

What is happening with the Canadian Archipelago sea ice area?  Like all Arctic regions, the sea ice area of the Canadian Archipelago expands in the winter and shrinks in the summer.  Many people have come believe that the average yearly behavior of the ice from 1979 to 2000 represents what is “normal.  The only special thing about these years is that they are the first 20 years over which satellite data on sea ice area was accumulated.

For the last several years the Canadian Archipelago sea ice area, and the Arctic sea ice area in general, have dropped below the “normal” at least for part of the year.  The headline grabbing stories have been about “first time” openings in the “Northwest passage” through the Canadian Archipelago.  There seems to be a lot of interest, concern and talk.

I have turned to Cryosphere Today, from the Polar Research Group at the University of Illinois, and The Advanced Microwave Scanning Radiometer on the Earth Observing System Aqua satellite (AMSR-E) for my information.  The odd thing is that while Cryosphere Today’s 365 day plot of the Canadian Archipelago’s sea ice area (figure 1, below) indictes that the sea ice area is LESS today than it was one year ago, Cryosphere Today’s own graphics of arctic sea Ice area for 10/14/07 and 10/14/08 clearly show that the sea ice area in the Canadian Archipelago is GREATER now than it was a year ago.  The AMSR-E graphics show the same thing, as displayed in figures 2 and 3, below

Figure 1. CryoSphere Today's plot 365 days of Canadian Archipelago Sea Ice Area from 10/14/08.  Note that this plot shows the sea ice area about 25% greater one year ago.

Figure 1. Cryosphere Today's plot of 365 days of Canadian Archipelago Sea Ice Area from 10/14/08. Note that this plot shows the sea ice area about 25% greater one year ago.

 

AMSR-E data for 10/14/08.

figure 2. Sea ice area representations. Upper Left: Cryosphere Today for 10/14/07. Upper Right: Cryosphere Today for 10/14/08. Bottom Left: AMSR-E data for 10/14/07. Bottom Right: AMSR-E data for 10/14/08.

 

Figure 3.  Same as figure 2, except showing close-ups of Canadian Archipelag0.

Figure 3. Same as figure 2, except showing close-ups of Canadian Archipelago. Note that 2007 data is on the left, and the 2008 data is on the right. These graphics clearly show more ice in the Canadian Archipelago now (on the right) than there was one year ago (on the left).

 What gives?  Am I seeing this right? The ice distribution graphics from both Cryosphere Today and from AMSR-E instrument aboard the Aqua satellite both show GREATER sea ice cover now (10/14/08) than one year ago (10/14/07).  I am just trying to understand this discrepancy.  If anyone has an explanation, please comment below.

By the way, trips through the Northwest passage have been made long before now.  The wooden ship, St. Roch, made it twice in the 1940s.  Roald Amundsen did it even earlier aboard the Gjoa in 1905.  Of course, we do not have satellite data to show us the sea ice in the Northwest passage prior to 1979.  Who knows what could have been done with modern equipment thousands of years ago when the Arctic was warmer than today?

h1

Don’t Panic – The Arctic has survived warmer temperatures in the past

October 15, 2008

Since we are in the season of comparing charts, graphs and interpretations of the summer Arctic ice melt, it may be useful to pause and consider the history of Arctic temperatures in the Holocene.  There is an abundance of data compiled by hardworking field researchers over the years.  Before everybody got so excited about global warming, it was understood that the Arctic was considerably warmer in earlier parts of the Holocene than in the present.  The evidence for these warmer periods seems to have been forgotten in an age when satellite data causes us to fixate on the last thirty years.

I have collected a short list of papers that indicate times during the mid-Holocene, and places in or near the Arctic, when it was warmer than the present.  Some of these papers may also indicate warmer periods in the early or late Holocene, but I am concentrating primarily on the mid-Holocene in this post.  Figure 1, below, shows the spatial distribution of areas covered by these papers.  Click on the image to get a larger view.  Figure 2 shows the times in the mid-Holocene that each paper says it was warmer than the present.

Figure 1.  Numbers correspond to the journal articles that are listed below.  They also correspond to the numbered lines in figure 2.

 

 Figure 2.  “Paper #” corresponds to the numbered journal articles listed below.  The colored areas indicate the time periods in the mid-Holocene for which the papers indicate it was warmer than present.

 

The evidence that the Arctic was warmer in the mid-Holocene than it is now is compelling.  At longitudes almost completely encircling the Arctic, palaeological proxies of all kinds speak from the past with the same message.  Treelines moved in latitudes and elevations.  Alkenone molecules produced from sun loving organisms in the top layer of ocean water recorded the temperature of the water and settled into the depths of the ocean, depositing their temperature record in the sediments.  The pollens of various species of plants changed their ratios with changing temperatures and forest locations, drifted over lakes and settled to the bottom, leaving layer upon layer of temperature history.  Choronomid midges, small insects that live out their short lives in just a few weeks, varied their physiology according to the temperature of their environment, and carried their temperature stories to lake sediments. Forest plant species came and went at temperatures rose and fell, leaving behind their seeds in successive layers of soil as positive reminders that they had been there.

These proxies, and others, strongly indicate that the arctic region was warmer around 5,000 years ago than it is today.  Read the papers listed below to see the details.

Please feel free to criticize my interpretations of the papers, or to point out contradictory or complementary papers.

__________________________________________________

1. Jung-Hyun Kim, Norel Rimbu, Stephan J. Lorenzb, Gerrit Lohmanna, Seung-IlNam, Stefan Schoutene, Carsten Ruhlemannf, Ralph R. Schneiderg, North Pacific and North Atlantic sea-surface temperature variability during the Holocene, Quaternary Science Reviews, 23, 2004

Kim, et. al., used alkenone-derived sea-surface temperature records from sediments from over 30 locations to derive temperature changes in the Pacific and the Atlantic Oceans during the Holocene.  I have marked the locations of the five highest northern latitude cores, two above the arctic circle and three below it.  Kim’s data for these cores covers only the last 7,000 years, rather than the entire Holocene.  Nevertheless, the cores show temperatures clearly dropping to modern values over the last 7,000 years.  The northern-most core (75N) shows a temperature drop of 4.4 degrees C since 7,000 years ago.  Two other cores show temperature drops greater than 3 degrees C (3.3 and 3.8 degree drops at 57.8N, 8.7E and 57.7N, 7.1E respectively).  The remaining two cores show temperature drops of 1.8 and 0.6 degrees C.  Get copy here.

2. Kultti, S., et. al., Past changes in the Scots pine forest line and climate in Finnish Lapland: a study based on megafossils, lake sediments, and GIS-based vegetation and climate data,” The Holocene, Vol 16 No3, 2004b.

In this paper, Kultti, et. al., (2004b) looked at tree lines in Finnish Lapland and found “Results indicate that pine reached its maximum distribution between 8300 and 4000 cal. yr BP. The inferred minimum shift in mean July temperature was at that time c. +2.5.” Get copy here.

3. Solovieva, N., and Jones, V., A multiproxy record of Holocene environmental changes in the central Kola Peninsula, northwest Russia, Journal of Quaternary Science, 17(4), 2002. 

Solovieva and Jones studied a multi-proxy record of the Kola Peninsula in northern Russia and concluded that for the period from 8000 years ago to 5400 years ago “A maximum of forest cover and the high Pinus abundance during this period indicate the Holocene climate optimum. The multiproxy data from Chuna Lake generally agree with the temperature reconstructions based on the evidence from the Greenland ice-cores (Stuiver et al., 1995) and summer temperatures were likely to have been 2°–3 °C higher than at present.” Get copy here.

4. MacDonald, G., et. al., Radiocarbon dated Pinus sylvestris L. wood from beyond tree-line on the Kola Peninsula, Russia, The Holocene, Vol. 10, No.1, 2000.

MacDonald, et. al., dated Scots Pine wood (Pinus sylvestris L.) in Russia’s Kola Peninsula and found “the density of trees north of the modern tree-line was greatest between 7000 and 5000 BP.  Get copy here.

5. Sarnthein, et. al., Centennial-to-millennial-scale periodicities of Holocene climate and sediment injections off the western Barents shelf, 75°N, Boreas, Vol. 32, 2003.

Sarnthein, et. al., studied sediments on the Barents shelf and found “disappearing sea ice from 6.4–5.2” thousand years before the present, and again “3.0–1.6 kyr BP.” Get copy here.
 

6. Kultti, S., Oksanen, P., and Väliranta, M., Holocene tree line, permafrost, and climate dynamics in the Nenets Region, East European Arctic, Canadian Journal of Earth Science, Vol 41, 2004a.

 “Pollen, stomata, and macrofossils in a lake core with a basal date of 9700 14C BPwere used to reconstruct past changes in climate and vegetation in the arctic tree line area, northeast European Russia” … “We interpret summer temperatures to have been ca. 3–4 °C higher between ca. 8900 and 5500 BP than at present, and the lowest temperature regime of the Holocene to have occurred between 2700 and 2100 BP.”
 

7. V.L. Koshkarova and A.D. Koshkarov, RegionalSignatures of Changing Landscape and Climate of Northern Central Siberia in the Holocene, Russian geology and geophysics, N 6, v. 45, 2004

 Koshkarova and Koshkarov(2004) draw their conclusions based on “25 sections of Holocene deposits and soils of northern Central Siberia [that] were studied by paleocarpologicalmethods. Special attention was given to the reconstruction of the dynamics of speciation of forest cover in time and space.” These 25 sections are all above the arctic circle and range in longitude from 86 to 119°E. They divide the Holocene in the region into “intervals 9-8 ka (thermal maximum), 6.5-5ka (climate optimum – combination of higher temperatures and higher humidity), and 2.5-2 ka (thermal minimum).  Get copy here.
 

8. Robert A. Monserud, Nadja M. Tchebakova, and Olga V. Denissenko, Reconstuction of the mid-Holocene Palaeoclimate of Siberia using a bioclimatic vegetation model, Palaeogeography, Palaeoclimatology, Palaeoecology, 139, 1998

 Monserud, et. al., concentrated on the mid-holocene, which they defined as 4600 to 6000 years before the present. They found that during this period the Siberian winters “between 60 and 65N the palaeoclimate was 5.3 C warmer on average, and between 65 and 70N it was 7.7 C warmer.” For the warmer months the found “Summer was 2-5 C warmer than today between 63 and 73N, embracing much of the Northern Taiga, Forest-Tundra, and Tundra zones. A band of moderate summer temperature anomalies (0 – 2 C) is centered at 65N, and a second band of greater anomalies (2-5 C) is centered at 70N.” Get copy here.
 

9. Ilyashuk, E.A., Ilyashuk, B.P., Andreev, A.A.b, Bennett, K.D., Hammarlund, D., Hubberten, H.W., Chironomid-inferred Holocene mean July air temperatures for the Lena River Delta area, East Siberia, and the Kola Peninsula, northwestern Russia, ACSYS Final Science Conference,11-14 November 2003, Arctic and Antarctic Research Institute (AARI), St. Petersburg, Russia

 Ilyashuk, et. al. show that Radiocarbon-dated chironomid records from the lake Nikolay region of the Lena River Delta area “imply the warmest (up to 2-3°C warmer than nowadays) climate during ca. 10,200-9200 cal. yr BP…with two short warm oscillations (up to 8.9oC) at c. 5600 and 4500-4100 cal. yr BP…and a relatively long warm period ca. 2300-1400 cal. yr BP.” Get copy here.
 

10. Matul, A. G., et. al., Recent and Late Holocene Environments on the Southeastern Shelf of the Laptev Sea As Inferred from Microfossil Data, Oceanology, Vol. 47, No. 1, 2007.

Matul, et. al., (2007) from the Russian Academy of Science studied microfossils from the Laptev Sea, which is north of Siberia and well within the Arctic circle. They found that “Judging from the increased diversity and abundance of the benthic foraminifers, the appearance of moderately thermophilic diatom species, and the presence of forest tundra (instead of tundra) pollen, the Medieval warming exceeded the recent “industrial” one and is reflected in the near-delta sediments.” But they indicate that it was warmer even earlier by saying “..the warming in the Laptev Sea during the period of ~5100–6200 years B.P. corresponding to the Holocene climatic optimum could be even more significant as compared with the Medieval Warm Period.”
 

11. Lawson, D.E.,et. al., 2007, Early to mid-Holocene glacier fluctuations in Glacier Bay, Alaska, in Piatt, J.F., and Gende, S.M., eds., Proceedings of the Fourth Glacier Bay Science Symposium, October 26–28, 2004: U.S. Geological Survey Scientific Investigations Report 2007-5047, p. 54-55.

Lawson looked at glacial advances and retreats in Glacier Bay, Alaska. Glacier Bay is well south of the Arctic circle, but yields information about northern latitude climates. They found a glacial retreat starting 6800 years ago followed by a new glacial advance starting 5000 years ago. The retreat “was long enough to develop a mature forest” on land that was subsequently recovered with ice. Get cop here.
 

12. Kaufman, D. S., et. al., Holocene thermal maximum in the western Arctic (0-180°W), Quaternary Science Reviews, 23, 2004

In a very comprehensive study of the western Arctic Kaufman and coauthors from the US, UK, Canada, Norway, Iceland, and Russia (2004), studied proxies from over 140 sites in the western hemisphere part of the arctic. Their abstract notes “Paleoclimateinferences based on a wide variety of proxy indicators provide clear evidence for warmer-than-present conditions at 120 of these sites. At the 16 terrestrialsites where quantitative estimates have been obtained, local HTM[Holocene Thermal Maximum] temperatures (primarily summer estimates) were on average 1.6 ± 0.8 ° C higher than present…”
They devided the region into four zones, which I have labeled on the map.
12a. Central Eastern Beringia.Sketchy evidence indicates that the Holocene Therma Maximum occurred very early and had a short duration in this region. Temperatures were several degrees above current temperatures for some period between 12.8 and 7.1 ka. (mean initiation plus one sigma to mean termination minus one sigma).
12b. Northern Continental Canada.Better evidence indicates that this zone experienced higher temperatures from about 7.3 to 4.3 ka.
12c. Canadian Arctic Islands.Good abundant data that this zone was warm from 8.6 to 4.9 ka.
12d. Greenland, Iceland and other Artic islands.Temperatures were high in this zone from 8.6 to 5.2 ka.
 

13. Stewart, T. and England, J., Holocene Sea-Ice Variations and Paleoenvironmental Change, Northernmost Ellesmere Island, NWT., Canada, Arctic and Alpine Research, Vol 15, No. 1, 1983.

 Stewart and England examined more than 70 samples or Holocene driftwood on Ellesmere at 82° N Latitude. The time distribution of the driftwood indicates “prolonged climatic amelioration at the highest terrestrial latitudes of the northern hemisphere” from 4200 to 6000 years before the present.  Get copy here.

14. D. Dahl-Jensen, K. Mosegaard, N. Gundestrup, G. D. Clow, S. J. Johnsen, A. W. Hansen, N. Balling, Past Temperatures Directly from the Greenland Ice Sheet, Science, 282, 1998

“Dahl-Jensen, et. al., use borehole data to conclude “After the termination of the glacial period, temperatures in our record increase steadily, reaching a period 2.5 K warmer than present during what is referred to as the
Climate Optimum (CO), at 8 to 5 ka. Following the CO, temperatures cool to a minimum of 0.5 K colder than the present at around 2 ka. The record implies that the medieval period around 1000 A.D. was 1 K warmer than present in Greenland.” Get copy here
h1

Volcanos in Gakkel Ridge NOT responsible melting the Arctic ice

July 10, 2008

I am not only a global warming skeptic, but a skeptic in general.  I call ’em as I see ’em.

There have been some attempts to link the arctic sea ice loss of the last several years to reports of volcanoes under thousands of feet of water in the Gakkel Ridge,

The truth is that all the energy from a volcano the size of Mount St. Helens could only melt 100 square kilometers of three meter thick ice.  This is a trivial amount of ice for the arctic region, which typically oscillates between about 4 million and 14 million square kilometers every year.  100 square kilometers is only one hundred thousandth of the yearly change in Arctic sea ice extent

.

Arctic region showing the location of the Gekkal ridge.  This Google Earthimage, with annotation by Moriarty, obviously does not show the arctic sea ice.

Let’s do some simple math to work this out:

First, how much energy is released by a volcano?  Of course, if varies greatly, but we just need an order of magnitude approximation for now.  A common estimate  for the energy released by the Mount St. Helens explosion is 24 megatons, where a megaton is supposed to be equivalent to the energy released by a million tons of TNT.  A joule is the basic SI unit for energy, and one megaton is equal to 4.2 million billion joules (4.2e+15 joules).  Therefore the 24 megatons released by Mount St. Helens translates into about 100 million billion joules (1.0E+17 joules).  That is:

(4.2E+15 joules/megaton  X  24 megatons  = 1.0E+17 joules).

So now the question is: how much ice could be melted by 100 million billion joules of energy?  It takes about 4 joules to heat one gram of water by 1 degree C.  But it takes many more joules to melt a gram of ice.  The amount of energy needed to melt a gram of a solid to a liquid is called the “heat of fusion.”  The heat of fusion for water is 334 joules per gram.   If we divide the total energy of the volcano by the heat off fusion of water, we will get the number of grams of ice that could be melted.  Doing the math:

1.0E+17 joules   /   334 joules per gram   =   3.0E+14 grams

OK, the energy released by Mount St. Helens would melt about 3.0E+14 (three hundred million million) grams of ice.  A gram of ice is about 1.1 cubic centimeters (1.1 cc), so we can round it to 1 cc just to make things simple.  That means that Mount St Helens released enough energy to melt 3.0E+14 cubic centimeters of ice. 

Let’s get a handle on what “3.0E+14 cubic centimeters of ice” means.  A cubic meter of ice is the same as 1,000,000 cubic centimeters of ice.   So, 3.0E+14 cubic centimeters of ice are the same as 3.0E+8 cubic meters of ice.  Still a pretty big number to grasp.  A sheet of ice that is one meter thick and one square kilometer would have a volume of 1 million cubic meters (1.0E+6 m3).  In this case, 3.0E+8 cubic meters of ice would be the same as 300 square kilometers of ice that is 1 meter thick.

Now we have a number that is easier to deal with.  That is, the energy of Mount St. Helens would be enough to melt 300 square kilometers or ice that is 1 meter thick.  Finally, we’ll make the estimate that the ice is about 3 meters thick in the arctic.  (Of course, it is much thicker some places and much thinner in others.)  Then the energy of Mount St. Helens would melt about 100 square kilometers of ice in the Arctic.

The bottom line

The Arctic goes through some serious changes in sea ice extent every year as the season change.  The sea ice extent changes by about 10 million square kilometers every year.  100 square kilometers is about one hundred thousandth of that.  It would take a thousand volcanos the size of Mount St. Helens every year to account for just 1% of the yearly Arctic ice loss.

I am not only a global warming sceptic, but a skeptic in general.  I call ’em as I see ’em.

Mount St Helens explosion, May 18th, 1980.

h1

Polar bears listed as endangered, while global sea ice anomaly is above average

May 15, 2008

They finally did it.  Today the polar bear was listed as an endangered species.  The New York Times reports 

The Center for Biological Diversity, Greenpeace and the Natural Resources Defense Council filed suit in 2005 to force a listing of the polar bear. The center, based in Arizona, has been explicit about its hopes to use this — and the earlier listing of two species of coral threatened by warming seas — as a legal cudgel to attack proposed coal-fired power plants or other new sources of carbon dioxide emissions.

The thrust of the argument that echoes around the internet and appears over and over again in the popular press is the following sequence: 1. Anthropogenic CO2 causes the planet to heat. 2. This causes more summer ice melt. 3. The longer duration of open water in the summer and fall hampers the bear’s seal hunting and breeding. 4. Bear population diminishes.

There was, in fact, a fairly rapid decrease in Arctic sea ice extent sea ice extent over the last few years.  But the losses were almost entirely recovered in an unprecedented ice build-up of Arctic sea ice in the last months of  2007 and the first months of 2008

The alarmists base their argument on the studies of the bear’s habitat by the IUCN World Conservation Union.   Much has been made of the IUCN’s list of the “observed or predicted trend” for the nineteen sub-populations of polar bears. Most people are not aware that only five of these nineteen populations are listed as “declining.”  These sub-populations are the Southern Beaufort Sea population, Norwegian Bay population, Western Hudson population, Baffin Bay population, and Kane Basin population.

What is the condition of the sea ice for these five populations today? See for yourself in the following graphs of sea ice area.*

Figure 1.  The Beaufort Sea, home of the Southern Beaufort Sea sub-population of polar bears, has had an almost exactly average seasonally adjusted sea ice extent for the last six months.

Figure 2.  The Canadian Archipelago is the home of the Norwegian Bay sub-population of polar bears.  This region has had an average seasonally adjusted ice extent for the last six months.

Figure 3.  The Hudson Bay is the home of the Western Hudson population.  The Hudson Bay seasonally adjusted sea ice extent has hovered around average for the last six months.  Although it has been below average for brief periods in the last month, at the time this post is being written it is slightly above average.

Figure 4.  The Baffin Bay / Newfoundland region contains the Baffin Bay and Kane subpopulations.  For most of the last six months the sea ice extent has been greater than the seasonally adjusted average.

 As the NYT article mentioned above made perfectly clear, this has been a battle over the alarmist’s fear of global warming, not about polar bears per se.  Global warming, they worry, is going to yield an ice free Arctic, and the land bound ice in the Antarctic is on the verge of melting and flooding the coastal regions of the planet.  So, how does the overall global sea ice extent look, as of today?  While it has wiggled up an down about the average since satellites have been measuring it, and it stayed below average for several years, it is currently above average, as shown in figure 5, below.

Figure 5. Global sea ice area and anomaly.  Click on the image to enlarge the most recent anomaly data.  For the last several months the anomaly has been positive.  That is, the seasonally adjusted anomaly has been greater than the 1979 to 2000 average. 

My guess is that most of the alarmists are hoping and praying for a significant meltdown in the Arctic this summer.  Without such a meltdown it won’t be polar bears that are endangered, but their credibility.

*  Data for all figures from the University of Illinois Polar Research Group.  For figures 1 through 4 of the sea ice areas and averages were digitized from the U of I graphs of sea ice areas and anomalies using 48 increments per year.  Then the anomalies were subtracted from the sea ice area to give the 1979 to 2000 average.  Figure 5 is from the U of I web page, with additional annotation by ClimateSanity.