Posts Tagged ‘michael mann’

h1

Gordian Knot of Nonsense – Part 6. Irrelevance of Baysian Analysis

May 28, 2012

It has been a while since I wrote about ”Climate related sea-level variations over the past two millennia” (Andrew C. Kemp, Benjamin P. Horton, Jeffrey P. Donnelly, Michael E. Mann, Martin Vermeer, and Stefan Rahmstorf, PNAS, 2011), which I will refer to as KMVR2011.

Please see this index of my posts concerning KMVR2011.

I want to sew up one loose end here.  Last time around I showed that this latest incarnation of the Rahmstorf model relating sea level to temperature was just as bogus at the previous versions. But I did not talk about one of their interesting (but ultimately irrelevant) new twists. Another layer of complexity was added by the application of Bayesian analysis, or in KMVR2011 nomenclature: “Bayesian multiple change-point regression.”

Bayesian analysis is a useful, but often counter intuitive, statistical method to tease out an underlying distribution from an observed distribution. That being said, the KMVR2011 application of Bayesian analysis starts out with a bogus model, which has been demonstrated ad nauseam. (See here and here.)  This added layer of complexity simply obfuscates the failures of the starting model, rather that addressing those failures.

My next series of posts will move on to another recent outing by Rahmstorf and company – Testing the robustness of semi-empirical sea level projections  (Rahmstrof, et. al., Climate Dynamics, November 2011)

h1

Gordian Knot of Nonsense – Part 5. Resulting sea-level rise rates

November 20, 2011

As usual, I will refer to ”Climate related sea-level variations over the past two millennia” (Andrew C. Kemp, Benjamin P. Horton, Jeffrey P. Donnelly, Michael E. Mann, Martin Vermeer, and Stefan Rahmstorf, PNAS, 2011)  as KMVR2011.

Please see this index of my posts concerning KMVR2011. Check back occasionally because the list of posts is slowly growing.

I will keep things almost entirely graphical this time around (no equations, YEAH!).

Figure 1. Figure 4c from KMVR2011. Global EIV land and ocean temperature and KMVR2011 equilibrium temperature.

.

Figure 2. Same as figure 1 from digitized data.

.

Figure 3. Same as figure 2 overlaid with GISS temperature (raw and smoothed) and with five hypothetical temperature scenarios starting around 1950

.

Figure 4. Same as figure 3, zoomed in to 20th century

Consider the temperature scenarios shown in figure 4.  Which one do you think would lead to higher sea-level rise rates, γ=0.9 or γ=1.1?  Take a look at figure 5, and you may be surprised!

Figure 5. Resulting Sea-Level rise rates when the KMVR20011 model is applied to my hypothetical temperature scenarios compared to the results when the model is applied to GISS temperature.

No Mistake

This not a result of some outrageous error in my calculations.  This is a direct consequence of the KMVR2011 model.  Like VR2009, this bizarre result comes from choosing b to be negative (their choice, not mine).

Some may argue that KMVR2011 uses a wide range of values for the variables in their Bayesian updating.  True enough.  But they kept b negative.  ALL combinations of variables that they used would give qualitatively the same results that I have shown.

h1

Gordian Knot of Nonsense – Part 4. Solving for To(t) using my hypothetical temperature scenarios

October 17, 2011

As usual, I will refer to ”Climate related sea-level variations over the past two millennia” (Andrew C. Kemp, Benjamin P. Horton, Jeffrey P. Donnelly, Michael E. Mann, Martin Vermeer, and Stefan Rahmstorf, PNAS, 2011)  as KMVR2011.

Please see this index of my posts concerning KMVR2011.  Check back occasionally because the list of posts is slowly growing.

To(t),  the “equilibrium temperature”

Recall the KMVR2011’s model includes a moving target “equilibrium temperure”, To(t),  given by equation Ia

The “equilibrium temperature” can be determined by inserting the temperature history or scenario into equation Ia and solving  the resulting differential equation for To(t).  Figure 1, below, shows an equilibrium temperature found by KMVR2011 when Mann’s Global EIV land and ocean temperature is used.

Figure 1. this is figure 4C from KMVR2011

In my previous post I laid out a formula (equation II, previous post)  for temperature vs. time that will cause the KMVR2011 model to yield an unrealistic sea level rise rate for a realistic temperature.    In this post I will take the necessary step of finding the “equilibrium temperature” that results when my hypothetical temperature scenario is inserted into KMVR2011’s equation Ia.  In a subsequent post I will show how my hypothetical temperature scenario and its resulting equilibrium temperature affect the sea level rise rate as calculated by the KMVR2011 model.

Quick and to the point

 Here is To(t). 

 

If you are not interested in the details, you can just take my word it and stop reading here.  Otherwise, continue on the following sections.

“Reasonable” temperature scenarios

 Even the best possible model could not be expected to give reasonable results if the input is nonsensical and it would not be a fair test of the model.   That is why, for the moment, I am choosing to apply hypothetical temperatures for the past (1960 to 2000) to the KMVR2011 model.  In that way the reader can compare my temperature scenarios to the same data used by KMVR2011 for that period and decide if my scenarios are “reasonable”.  

The following graph shows five different temperature scenarios created by my temperature formula.  Each of these scenarios is identical, except for the choice of γ (gamma)

Are these “reasonable” temperature scenarios?  Are they a fair test of the KMVR2011 model?  Let’s compare them to Hansen’s GISS instrumental temperature data and to Mann’s (Mann is the “M” in KMVR2011) own Global EIV, Land and Ocean temperature reconstruction for the same period…

To(t) from my hypothetical temperature scenarios

If you agree that my temperature scenarios are reasonable, then without further ado, here is the derivation of To(t).

Let

Inserting equation II into equation Ia gives


Letting

Then


Solving the differential equation in IIIa gives


The constant of integration, C2, can be found by choosing a known  To(t)  at some time, t’…


…and solving for C2

 

Now, simply substitute equation VI in equation IV for C2


Coming Soon

Sea level rise rates from the KMVR2011 model when my simple, reasonable temperature scenarios and the corresponding KMVR2011 “equilibrium temperatures” are used.  I think you will find it interesting.

Update 11/27/11

The term (ατ + 1) were corrected to  (ατ – 1)  in equations (IV) through (VII).  This was a typographical error and all calculations had been done with the correct term.