Posts Tagged ‘Wada’

h1

Uh, Oh! Karl, et. al., is bad news for Stefan Rahmstorf’s sea level rise rate.

September 25, 2015

Conclusion first

When the 20th century GISS temperature is modified according to Tom Karl, et.al., it causes the 21st century sea level predictions of Vermeer’s and Rahmstorf’s semi-empirical model to go down!

Details

I have written extensively about “Global sea level linked to global temperature,” by Vermeer and Rahmstorf (which I will refer to as VR2009).

VR2009 was a widely cited claim of using historical 20th century sea level and temperature data to calculate parameters that could be used to build a model to predict 21st century sea level rise for various 21st century temperature scenarios.  I reproduced the VR2009 model based on their description.  My code was verified by reproducing the VR2009 results using the same inputs that they used.

I spent a lot of time pointing out some of the bizarre results of their model that surely disqualified it form being taken seriously, some of which can be seen here, here, and here.

I also spent a lot of time pointing out that the VR2009 choices of 20th century sea level data sources left much to be desired.  For example, they used the 2006 Church and White sea level data that was already outdated.  If they had used the revised Church and White data, then their resulting sea level rise predictions for the 21st century would have been much lower.

They happily modified Church’s and White’s outdated sea level data by subtracting a reservoir correction (Chao, et. al.), which made their 21st century predictions for sea level rise go up. But they made no attempt to estimate a groundwater depletion correction. It turns out, unsurprisingly, that the groundwater depletion is of the same magnitude as the reservoir correction (Wada, et. al.), and including it would have made their 21st century predictions go down.

Nevertheless, Rahmstorf would later claim that his modeling approach was “robust!”  That is, it would give essentially the same result for the 21st century given different sources of 20th century sea level data.

So, I also implemented the VR2009 technique using several different sources of sea level data, which should have given similar results, according to Rahmstorf’s claim of robustness.  In fact, they gave widely varying results, and every combination of sea level data, reservoir data, and groundwater depletion data that I tried gave lower results than VR2009’s chosen combination.

New Temperature Data!

The widely reported nearly two decade long pause in global warming was causing suicidal ideation among hard-core global warming alarmists.  Something had to be done to stop them from slitting their wrists with shards of glass from their shattered thermometers.

Just in the nick of time – revised temperature data!   Like all proper revisions of temperature data, this revision caused the reported temperature change of the 20th century to go up.

This was a result of a paper by Tom Karl, et. al. (Nature) based on very thin reasoning (see for example) that argued for such revision.  The folks at GISS (who provided VR2009’s temperature data) glommed onto Karl’s logic and subsequently revised their temperature data accordingly.  Other temperature data source like UAH and RSS did not.

Which means we must ask ourselves, what happens to 21st century sea level rise predictions based on the VR2009 model using the now modified GISS data?

VR2009 applied their model to six families of temperature scenarios for the 21st century form the IPCC’s 4th Assessment Report.  Let’s see what happens to each of those scenarios when we update the 20th century GISS temperature data.

The IPCC temperature scenarios that VR2009 used for prediction of 21st century sea level rise.

Case 1.

Sea level inputs are identical to what VR2009 used: Church’s and White’s sea level with the Chao reservoir correction.  The old GISS temperature data is replaced with the new GISS temperature data.  The table below shows that the new GISS data yields 21st century sea level rises that are about 17% less than when the old GISS data is used.

Old GISS vs New GISS

It is a shame that after Tom Karl went to all the trouble to increase the temperature rise of the 20th century it just makes VR2009’s model predict LOWER sea levels for the 21st century.  This must be a great disappointment to Vermeer and Rahmstorf, so you can be pretty sure they will never tell you this result. But I just did.

Case 2

As I pointed out previously, VR2009 chose to use outdated 2006 Church and White sea level data, instead of Church’s 2009 data.  They also neglected a groundwater depletion correction.  When these improvements are included the VR2009 model yields 21st century sea level rises that are only about 55% of VR2009.  When the new GISS temperature data is included in the mix this drops to about 45%.

New GISS CW2009 Chao Wada

Case 3.

Lest Vermeer or Rahmstorf argue that their large sea level rise rates are saved by another update of the Church and White data in 2011, I have include these results also.  The difference between 2009 and 2011 Church and White sea level data was small.  Here is how the 2011 Church and White sea level data version plays out in the VR2009 model. The resulting 21st century sea level rise predictions are only about 43% of the VR2009 predictions.

New GISS CW2011 Chao Wada

The trend continues.

It seems that no matter what combination of inputs that are used in the VR2009 model, the predicted sea level rise for the 21st century is always smaller than with VR2009’s choice of inputs.  I wonder what that implies?

h1

Rahmstorf (2011): Robust or Just Busted (Part 5): Why a paper about “robustness”

September 29, 2012

This is part 5 of a multi-part series about “Testing the robustness of semi-empirical sea level projections,” Rahmstorf, et. al., Climate Dynamics, 2011. You can see an index of all parts here. I frequently refer to this paper as R2011.

I will refer to Stefan Rahmstorf’s ”Testing the robustness of semi-empirical sea level projections” as R2011 [1].

What does R2011 mean by “robust?”

What does Rahmstorf mean when he says his model linking sea level to temperature is “robust?”  Simply this: when the inputs that he deems acceptable are inserted into his model, he gets the results he likes.

How does he decide which inputs are acceptable?  Easy – if they yield the results he likes, then they are acceptable.  It is a very simple and efficient system of logic!

Why a paper about “robustness?”

Rahmstorf and his associates have a pressing need to defend their sea level rise projections.  I have presented a host of reasons why his model is bogus.  One of the most embarrassing is that one of his fit parameters, that he expected to be positive, is in fact negative for every combination of input tried.  This leads to all kinds of bizarre results (see here, here and here , for example).  The other is that his sea level projections dropped dramatically when his preferred source of 20th century historical input data updated their data set.

This “robustness” paper (R2011) is a stumbling attempt to dismiss the revised sea level data from the source that he had previously enthusiastically used.

A quick recap

Rahmstorf’s model, which I will refer to as the VR2009[2] model, attempts to relate global sea level rise to global temperature through the following formula…

where H is sea level and T is temperature.  Insert historical data for H and T,  and solve to a, b, and To.  Then insert projected temperatures for the 21st century and calculate projected sea level rises for the 21st century.  The VR2009 model and approach have an amazing number of problems and the list just keeps getting longer.  There is a whole family of realistic temperature scenarios for the 21st century that cause this model to yield ridiculous results (see here).  The root of most of these problems comes from the fact that every set of historical sea level inputs and temperatures that Rahmstorf and associates have tried result in a negative b.  That includes every set of input data considered in R2011 (see figure 1, below).

Model inputs and projections in R2011

(click to enlarge) …

FIGURE 1. R2011’s projections of 21st century sea level rise and baseline temperatures under the RCP45 emissions senario (Moss, 2010)[3] for various temperature and sea level input data sets.

I have circled the results R2011 likes.  As you can see, nothing involving the Church’s and White’s 2011 sea level data (CW11)[4] meets R2011’s  quality standard.  R2011 has determined that Church’s and  White’s 2006 sea level data (CW06)[5] is better than Church’s and White’s 2011 data, despite the fact that Church and White obviously think their updated 2011 data is better.

It comes down to To

Why does R2011 think the 2006 sea level data is better than the improved 2011 sea level data?  Well, I have already explained that – the 2006 Church and White sea level data gives the results that R2011 wants – higher sea level rise projections for the 21st century!

But they can’t really say that.  Instead they say that the 2011 Church and White data leads to a baseline temperature, To, that they insist is too low.  To is the steady-state temperature deviation from the 1950-1980 average temperature at which Rahmstorf’s model says the sea level would be unchanging.

Look at the right side of figure 1.  It shows the baseline temperature that R2011 derived with the various sets of input data.  The values of To that meet with R2011’s approval average out to about -0.43 degrees.  But those based on CW11 average out to about -0.62 degrees C.  A difference of less than two tenths of a degree.

If you were to ask the authors of R2011 what other evidence do they have that To must be about -0.43 degrees, they will refer you to “Climate related sea-level variations over the past two millennia[6],” which used evidence from two salt marshes in North Carolina to corroborate this global value.  And they have great confidence in this independent confirmation (because two out of three of the R2011 authors were also authors on this paper).  Hmmm.

I will have more to say about R2011’s preference for To in a later post.

A few input combinations that R2011 did not show you

R2011 implies that it has tried some vast universe of input sea level and temperature data combinations in their model. They say “We then compare projections of all these different model versions (over 30)…”  Wow! Count them – over 30!

But there are many more possible combinations than that.  R2011 has picked a few cherries from a very prolific tree.

In figures 2 and 3, below, I have run several temperature and sea level input data sets in my implementation of Rahmstorf’s model.  In some cases my input combinations are the same as some found in figure 1.  In some cases they are different.  I have arranged the input combinations in chronological order, with older versions of input data on the bottom.  Notice a trend?  Figure 2 and figure 3 give projections based on the RCP45  and RCP85 emission scenarios, respectively.

FIGURE 2. Sea level rise projections for the 21st century based on my implementation of Rahmstorf’s model under the RCP45 emissions scenario (Moss, 2010) for various temperature and sea level input data sets.
FIGURE 3. Sea level rise projections for the 21st century based on my implementation of Rahmstorf’s model under the RCP85 emissions scenario (Moss, 2010) for various temperature and sea level input data sets.

As you can see, newer sea level data (whether it is actually sea level (CW06 vs CH11, or reservoir storage (RS) or ground water depletion (GWD)  modifiers) tends to lead to lower 21st century projections when inserted into Rahmstorf’s model.

Which projection do I endorse? None of them.  Make no mistake – the Rahmstorf model is bogus, no matter what the inputs are.  I am just playing games with it.  The Rahmstorf model is an illusion that hooks you with a simple truth: It is a pretty good bet that higher temperatures lead to higher sea levels.  But the Rahmstorf model is not much better than a Ouija board for quantifying how much.

There is much to be said about the results in figures 2 and 3.  The 48 files below give the long story that is summarized in figures 2 and 3.

Much more to come in later posts

Sea level data: Church and White 2006
Reservoir storage: Chao 2oo8
Ground water depletion: none
Result files…
Summary: vr-summary-120923-091214.doc
Inputs: vr-input-image-120923-091214.png
Fit: vr-fit-image-120923-091214.png
Projections: vr-projections-image-120923-091214.png

Sea level data: Church and White 2006
Reservoir storage: Chao 2oo8
Ground water depletion: Wada 2010 extrapolated to 1880
Result files…
Summary: vr-summary-120923-091326.doc
Inputs: vr-input-image-120923-091326.png
Fit: vr-fit-image-120923-091326.png
Projections: vr-projections-image-120923-091326.png

Sea level data: Church and White 2006
Reservoir storage: Chao 2oo8
Ground water depletion: Wada 2010
Result files…
Summary: vr-summary-120923-091413.doc
Inputs: vr-input-image-120923-091413.png
Fit: vr-fit-image-120923-091413.png
Projections: vr-projections-image-120923-091413.png

Sea level data: Church and White 2006
Reservoir storage: Chao 2oo8
Ground water depletion: Wada 2012
Result files…
Summary: vr-summary-120923-091517.doc
Inputs: vr-input-image-120923-091517.png
Fit: vr-fit-image-120923-091517.png
Projections: vr-projections-image-120923-091517.png

Sea level data: Church and White 2006
Reservoir storage: Pokhrel 2012 extrapolated back to 1900
Ground water depletion: Pokhrel 2012 extrapolated back to 1900
Result files…
Summary: vr-summary-120923-091643.doc
Inputs: vr-input-image-120923-091643.png
Fit: vr-fit-image-120923-091643.png
Projections: vr-projections-image-120923-091643.png

Sea level data: Church and White 2006
Reservoir storage: Pokhrel 2012
Ground water depletion: Pokhrel 2012
Result files…
Summary: vr-summary-120923-091727.doc
Inputs: vr-input-image-120923-091727.png
Fit: vr-fit-image-120923-091727.png
Projections: vr-projections-image-120923-091727.png

Sea level data: Church and White 2011
Reservoir storage: Chao 2008
Ground water depletion: none
Result files…
Summary: vr-summary-120923-091904.doc
Inputs: vr-input-image-120923-091904.png
Fit: vr-fit-image-120923-091904.png
Projections: vr-projections-image-120923-091904.png

Sea level data: Church and White 2011
Reservoir storage: Chao 2008
Ground water depletion: Wada 2010 extrapolated to 1880
Result files…
Summary: vr-summary-120923-091956.doc
Inputs: vr-input-image-120923-091956.png
Fit: vr-fit-image-120923-091956.png
Projections: vr-projections-image-120923-091956.png

Sea level data: Church and White 2011
Reservoir storage: Chao 2008
Ground water depletion: Wada 2010
Result files…
Summary: vr-summary-120923-092105.doc
Inputs: vr-input-image-120923-092105.png
Fit: vr-fit-image-120923-092105.png
Projections: vr-projections-image-120923-092105.png

Sea level data: Church and White 2011
Reservoir storage: Chao 2008
Ground water depletion: Wada 2012
Result files…
Summary: vr-summary-120923-092202.doc
Inputs: vr-input-image-120923-092202.png
Fit: vr-fit-image-120923-092202.png
Projections: vr-projections-image-120923-092202.png

Sea level data: Church and White 2011
Reservoir storage: Pokhrel 2012 extrapolated to 1900
Ground water depletion: Pokhrel 2012 extrapolated to 1900
Result files…
Summary: vr-summary-120923-092330.doc
Inputs: vr-input-image-120923-092330.png
Fit: vr-fit-image-120923-092330.png
Projections: vr-projections-image-120923-092330.png

Sea level data: Church and White 2011
Reservoir storage: Pokhrel 2012
Ground water depletion: Pokhrel 2012
Result files…
Summary: vr-summary-120923-094501.doc
Inputs: vr-input-image-120923-094501.png
Fit: vr-fit-image-120923-094501.png
Projections: vr-projections-image-120923-094501.png

_________________________________

[1]  Rahmstorf, S., Perrette, M., and Vermeer, M., “Testing the robustness of semi-empirical sea level projections” Climate Dynamics, 2011

[2] Vermeer, M., Rahmstorf, S., “Global sea level linked to global temperature,” PNAS, 2009

[3] Moss, et. al., “The next generation of scenarios for climate change research and assessment,” Nature, 463, 2010

[4] Church, J. A. and N.J. White, “Sea-level rise from the late 19th to  the early 21st Century“, Surveys in Geophysics, 2011

[5] Church, J. A., and N. J. White, “A 20th century acceleration in global sea-level rise“,  Geophys. Res. Lett., 33, 2006

[6] Kemp, Horton, Donnelly, Mann, Vermeer & Rahmstorf,  “Climate related sea-level variations over the past two millennia,” PNAS, 2011

h1

Rahmstorf (2011): Robust or Just Busted (Part 4): First results from new code

September 14, 2012

This is part 4 of a multi-part series about “Testing the robustness of semi-empirical sea level projections,” Rahmstorf, et. al., Climate Dynamics, 2011. You can see an index of all parts here. I frequently refer to this paper as R2011.

I will refer to Stefan Rahmstorf’s ”Testing the robustness of semi-empirical sea level projections”  as R2011 [1].

The new code for consistent processing of temperature and sea level data according to the predominant Vermeer and Rahmstorf 2009 model (VR2009)[2] is complete.

It is written LabView V7.1.  There have been several upgrades to LabView since V7.1, but I believe my code will open in any of them.  I prefer this older version of LabView for a variety of reasons that I will not go into here.  But one advantage is that anyone who is interested in running this code can find a used student version of LabView on Ebay at a very reasonable cost.

My code can be downloaded here.

VR2009 input the GISS temperature, Church’s and White’s 2006 sea level data, and modified the sea level data with a correction for reservoir storage from Chao and determined the fit parameters, a, b, and To  for their model…

Rahmstorf and company figured that once a, b, and To were found they could insert hypothesized temperature scenarios for the 21st century into equation 1 and calculate the resulting sea levels.  I have provided a long list of criticisms of their logic.  One of the most devastating observations is that their own source of 20th century sea level data(Church and White, 2006[3]) had revised their data, and the new version of data (Church and White 2009[4] or Church and White 2011[5]) resulted in much lower sea levels by the end of the 21st century when inserted in to equation 1.

Two years ago I reproduced the VR2009 fit parameters, a, b, and To, to demonstrate that I could accurately reproduce their model.

In R2011 Rahmstorf re-works the numbers with the same inputs used in VR2009, and I have reworked the numbers with this new code.  And for the same inputs used back on VR2009, everything lines up within Rahmstorf’s stated uncertainties.  But that is a minor point.  Rahmstorf’s primary objective in R2011 is to defuse my observation that Church’s and White’s newer, more accurate sea level data causes Rahmstorf’s model to yield much lower sea level projections for the 21st century.  Plenty of time to deal with that issue later.

But for now and for the record: in VR2009 Vermeer and Rahmstorf found

a = 5.6 ± 0.5 mm/year/K

b= -49 ± 10 mm/K

To = -0.41 ± 0.03 K

In 2010, using my implementation of their model, I found

a = 5.6  mm/year/K

b= -52 mm/K

To = -0.42 K

In R2011 Rahmstorf presents slightly different numbers than he did in VR2009 for the same input conditions.  Similarly, with my new code I now get slightly different numbers for the same input conditions.

With the new code I found

a = 5.8  mm/year/K

b= -54 mm/K

To = -0.41 K

Presentation of my results

In R2011 Rahmstorf makes some claims based the same model as equation 1, but with various combinations of temperature and sea level data from different sources.  His claim is that he gets essentially the same results – no matter what inputs he uses – indicting that his model is “robust.”

I will also be presenting a lot of results for different possible inputs in the days to come.   But my results will be very detailed, complete, and entirely open for your examination.  You also have access to my complete code.

My code will always generate four files for any set of inputs.  Three of those files are images of: graphs of the input data;  graphs of the model fits to the input data (used to derive a, b, and To); and graphs of sea level projections based on various temperature scenarios for the 21st century, including the SRES emission scenarios used in VR2009 and the RCP45 and RCP85 scenarios used in R2011.  The fourth file is a tab delimited text file with all setup parameters, fit plots and results, and projections.

Note that the graph images of the 21st century sea level projections will not be autoscaled.  That is, the Y axis of the projection graphs will all have the same scaling.  This will make many of the graphs look crowded, but it will also be easy to make a qualitative comparison of the projections from different input data.   You can always open the tab delimited text file in the spreadsheet of your choice and replot the data as you see fit.

Below you can see an example of the graph images and the corresponding tab delimited text file that is generated by my code with the same input data used to find the model fit parameters listed above.  That is, I will use the  GISS temperature, Church and White’s 2006 sea level data and the Chao reservoir correction, which result in my values of a, b, and To, shown above.

The tab delimited text file is shown below.  I have truncated the columns of data (which could be thousands of rows long).   The headers and columns would line up better if you opened the file in a spreadsheet.

INPUTS
Temperature filename: T GISS Land Ocean.txt
Original source: http://data.giss.nasa.gov/gistemp/graphs_v3/Fig.A2.txt		
http://data.giss.nasa.gov/gistemp/graphs_v3/

Sea level filename: SL CW06.txt
Original source: http://www.psmsl.org/products/reconstructions/church_white_grl_gmsl.lis

Modifier filename: RS Chao 2008.txt
Original source: “Impact of Artificial Reservoir Water Impoundment on Global Sea Level”		
Chao, et al., Science 320, 212 (2008)

SETUP PARAMETERS
Minimizing residual: dH/dt
Extension (years): 15.0
Smoothing Gaussian FWHM (years): 15.0
input years used: 1880.0 - 2000.0

FIT PARAMETERS
a: 5.8
b: -54
To: -0.41
H mse: 1.986
dH/dt mse: 0.250

FIT CURVES
date	model H (mm)	data H (mm)	H residuals (mm)	model dH/dt (mm/year)	data dH/dt (mm/year)	dH/dt residuals (mm/year)
1880.050000	-76.997238	-76.648275	0.348963	1.252341	0.699570	-0.552771
1880.150000	-76.873236	-76.577572	0.295664	1.240020	0.714500	-0.525521
1880.250000	-76.750402	-76.505711	0.244692	1.228336	0.722720	-0.505615
    |               |                |              |              |                |                |      
    |               |                |              |              |                |                |    
PROJECTIONS
year	RCP45	RCP85	A1B max	A1B mid	A1B min	A1F1 max	A1F1 mid	A1F1 min	A1T max	A1T mid	A1T min	A2 max	A2 mid	A2 min	B1 max	B1 mid	B1 min	B2 max	B2 mid	B2 min
2000.500000	3.564485	3.462285	4.177685	4.330985	4.330985	4.841985	4.688685	4.586485	4.279885	4.228785	4.688685	4.126585	4.382085	4.790885	4.126585	4.841985	4.688685	4.841985	4.841985	4.790885
2001.500000	7.325070	7.132270	8.226370	8.413370	8.668870	8.815270	8.679370	8.997570	7.908170	8.169470	8.730470	8.181070	8.458670	9.178770	8.181070	9.019670	9.037070	8.917470	8.917470	8.923270
2002.500000	11.429255	11.515155	12.424755	12.588555	13.019455	12.938255	12.819755	13.511955	11.681455	12.169255	12.916155	12.283055	12.628055	13.567755	12.334155	13.170555	13.392355	12.568955	12.875555	13.085755
   |               |                |              |              |                |                |      |               |                |              |              |                |                |

Tab delimited text: VR summary 120913-212735.doc

The three associated graph images…

Input data image: https://climatesanity.files.wordpress.com/2012/09/vr-input-image-120913-212735.png

Fit image: https://climatesanity.files.wordpress.com/2012/09/vr-fit-image-120913-212735.png

projections image: https://climatesanity.files.wordpress.com/2012/09/vr-projections-image-120913-212735.png

___________________________________

[1]  Rahmstorf, S., Perrette, M., and Vermeer, M., “Testing the robustness of semi-empirical sea level projections” Climate Dynamics, 2011

[2] Vermeer, M., Rahmstorf, S., “Global sea level linked to global temperature,” PNAS, 2009

[3] Church, J. A., and N. J. White, “A 20th century acceleration in global sea-level rise“,  Geophys. Res. Lett., 33, 2006

[4] www.psmsl.org/products/reconstructions/church_white_new_gmsl.lis

[5] Church, J. A. and N.J. White, “Sea-level rise from the late 19th to  the early 21st Century“, Surveys in Geophysics, 2011